首页> 外文学位 >Improved approximation algorithms for geometric packing problems with experimental evaluation.
【24h】

Improved approximation algorithms for geometric packing problems with experimental evaluation.

机译:改进的近似算法,用于带有实验评估的几何堆积问题。

获取原文
获取原文并翻译 | 示例

摘要

Geometric packing problems are NP-complete problems that arise in VLSI design. In this thesis, we present two novel algorithms using dynamic programming to compute exactly the maximum number of k x k squares of unit size that can be packed without overlap into a given n x m grid, one algorithm is O &parl0;nmk k2mk time and the other is O &parl0;nmk 2e2m/k&parr0; time for any given integer k > 1. Combining the results with the well-known shifting strategy of Hochbaum and Maass, we can derive a (1 - epsilon) times the optimal approximation algorithm for these problems that runs in O (n m 1/(epsilon kk) 2k*k/epsilon time for the first algorithm and O(n m 1/(epsilon 2k) e2/epsilon k3/epsilon) time for the second algorithm on an n x m grid for any given epsilon 1. The best known previous algorithm was due to Hochbaum and Mass and would give (1 - epsilon)2 times the optimal approximation and run in O(k2 (1/epsilon)2 (n m) (1/epsilon)*(1/epsilon) time. The first algorithm was implemented and ran successfully on problems of large input up to 1,000,000 nodes for different values of k and epsilon. A heuristic based on the second algorithm is implemented. This heuristic is fast in practice, but may not always be giving (1 - epsilon) times optimal in theory. However, over a wide range of random data this version of the algorithm is giving very good solutions very fast and runs on problems of up to 100, 000, 000 nodes in a grid and different ranges for k and epsilon. It is also shown that this version of algorithm is clearly superior to the first algorithm and has Shown to be very efficient in practice.
机译:几何堆积问题是VLSI设计中出现的NP完全问题。在本文中,我们提出了两种新颖的算法,它们使用动态编程来精确计算单位大小的kxk平方的最大数量,该数量可以无重叠地打包到给定的nxm网格中,一种算法为O&parl0; nmk k2mk时间,另一种算法为O &parl0; nmk 2e2m / k&parr0;任何给定整数k> 1的时间,将结果与Hochbaum和Maass的著名移位策略相结合,我们可以得出这些问题的最佳近似算法的(1-ε)倍,且算法为O(nm 1 /(对于任何给定的epsilon <1,第一个算法的epsilon kk)2k * k / epsilon时间,第二个算法在nxm网格上的O(nm 1 /(epsilon 2k)e2 / epsilon k3 / epsilon)时间。该算法是由Hochbaum和Mass提出的,将提供(1-ε)2倍的最佳逼近度,并以O(k2(1 / epsilon)2(nm)(1 / epsilon)*(1 / epsilon)的时间运行。该算法得以实现,并成功解决了k和epsilon值不同而输入量高达1,000,000个节点的大输入问题。实现了基于第二种算法的启发式算法。该启发式算法在实践中很快,但可能并不总是给出(1-epsilon ),理论上是最优值。但是,在广泛的随机数据范围内,该算法的版本具有很好的解决方案的速度非常快,并且可以解决网格中多达100、000、000个节点以及k和epsilon不同范围的问题。还表明,该算法版本明显优于第一种算法,并且在实践中已证明非常有效。

著录项

  • 作者

    Song, Yongqiang.;

  • 作者单位

    University of North Texas.;

  • 授予单位 University of North Texas.;
  • 学科 Computer Science.
  • 学位 M.S.
  • 年度 2003
  • 页码 45 p.
  • 总页数 45
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号