首页> 外文学位 >Hydroxyapatite/Poly(L-Lactic Acid) Fibrous Composites for Bone Tissue Engineering.
【24h】

Hydroxyapatite/Poly(L-Lactic Acid) Fibrous Composites for Bone Tissue Engineering.

机译:用于骨组织工程的羟基磷灰石/聚(L-乳酸)纤维复合材料。

获取原文
获取原文并翻译 | 示例

摘要

Human bone is a hybrid of hydroxyapatite (HA) and biopolymer nanofibrous composite. Thus, HA/biopolymer fibrous composites have been regarded as prospective candidates for bone tissue engineering. However, preparing HA/biopolymer fibrous composites mimicking the composition, structure, mechanical and biological properties of bone matrix has long been an attractive but challenging topic. In this work, different HA/poly(L-Lactide) (PLLA) micro- and nanofibrous composites were prepared and investigated for bone tissue engineering applications.;First of all, a HA/PLLA microfibrous composite was made by coating fibers with HA using a biomimetic method. To increase the coating content and enhance its bonding with the substrate, PLLA fibers were pre-treated with NaOH and NaOCl solutions at mild conditions. The etching treatment not only increased the roughness and the hydrophilicity of fibers, but also promoted HA coating formation on PLLA fiber surfaces. Influences of surface treatment and HA coating processes on the mechanical properties of PLLA and HA/PLLA fibers were also investigated systemically.;In addition, highly porous HA/PLLA nanofibrous composite scaffolds were prepared by incorporating either HA nano- or microparticles into PLLA nanofibers using an electrospinning technique. HA nanoparticles with different aspect ratios and variant levels of carbonate substitutions were synthesized using a wet precipitation method by adjusting the heating temperature and/or the initial ion concentration of the reaction system. Needle-shaped HA microparticles were prepared using a urea decomposition method. It was for the first time that needle-shaped HA nano- and microparticles were perfectly oriented along the long axe of electrospun nanofibers. All HA particles significantly enhanced the tensile modulus, strength and toughness of the corresponding scaffold, but to different extents. The biocompatibility and cell signaling property of selected nanofibrous scaffolds were evaluated by in vitro culture of rat osteosarcoma ROS17/2.8 cells on the scaffold surface. Cell morphology, viability and alkaline phosphatase (ALP) activity on these scaffold indicated their good potential for bone tissue engineering.
机译:人体骨骼是羟基磷灰石(HA)和生物聚合物纳米纤维复合材料的混合体。因此,HA /生物聚合物纤维复合材料已被认为是骨组织工程的潜在候选者。然而,制备模拟骨基质的组成,结构,机械和生物学特性的HA /生物聚合物纤维复合材料一直是一个有吸引力但具有挑战性的课题。在这项工作中,制备了不同的HA /聚(L-丙交酯)(PLLA)微纤维和纳米纤维复合材料,并研究了其在骨组织工程应用中的应用。首先,通过使用HA涂覆纤维来制备HA / PLLA微纤维复合材料。仿生方法。为了增加涂层含量并增强其与基材的粘合力,在温和的条件下用NaOH和NaOCl溶液对PLLA纤维进行了预处理。蚀刻处理不仅增加了纤维的粗糙度和亲水性,而且促进了PLLA纤维表面上HA涂层的形成。还系统地研究了表面处理和HA涂覆工艺对PLLA和HA / PLLA纤维的力学性能的影响。此外,还通过使用HA纳米或微粒将PL纳米纤维掺入PLLA纳米纤维中制备了高孔隙度的HA / PLLA纳米纤维复合支架。电纺技术。通过调节反应系统的加热温度和/或初始离子浓度,使用湿法沉淀法合成了具有不同长宽比和不同碳酸盐取代度的HA纳米粒子。使用尿素分解法制备针状的HA微粒。首次将针状HA纳米粒子和微粒沿着电纺纳米纤维的长轴完美定向。所有HA颗粒均显着提高了相应支架的拉伸模量,强度和韧性,但是程度不同。通过在支架表面上体外培养大鼠骨肉瘤ROS17 / 2.8细胞,评估了所选纳米纤维支架的生物相容性和细胞信号传导特性。这些支架上的细胞形态,活力和碱性磷酸酶(ALP)活性表明它们在骨组织工程中具有良好的潜力。

著录项

  • 作者

    Peng, Fei.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Materials Science.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号