首页> 外文学位 >Particle size and boundary effects in rapid granular shear flows: An experimental and numerical study.
【24h】

Particle size and boundary effects in rapid granular shear flows: An experimental and numerical study.

机译:快速颗粒剪切流中的粒径和边界效应:一项实验和数值研究。

获取原文
获取原文并翻译 | 示例

摘要

The measured shear stress of glass spheres in an annular shear cell experiment is reported. In order to explore the particle size effect, the experiments are run using four different particle diameters, d = 2, 3, 4, and 5mm. It is found that the shear stress follows the Bagnold scaling with respect to the apparent shear rate, but deviates from the Bagnold scaling with respect to particle size. For high solids concentration the results deviate qualitatively from the kinetic theory for bounded granular shear flows, where the non-dimensional shear stress measured with larger particles exceeds that measured for smaller particles by as much as one order of magnitude. The effect of the boundary geometry is explored by using three different boundary types; type 1 employs aluminum radial half-cylinders, type 2 employs aluminum hemispheres arranged in a polar hexagonal closed packed configuration, and type 3 employs sandpaper. It is shown that the geometry of the boundary has an insignificant effect on dilute flows of small particles. For denser flows and/or larger particles the difference is evident. The shear to normal stress ratio is found to depend on the particle diameter, solids concentration, and in some cases on the shearing rate. The effect of boundary type on the stress ratio is only noticeable in dilute flows involving small particles. DEM simulations of the experiments are used to obtain velocity and solids concentrations profiles. It is shown that the extent of shearing within the flow depends on the global solids concentration, particle size, and boundary type. These results imply that in granular materials-structure interaction, the structure's properties are just as important as the properties of the granular material. Their interaction may also depend on the relative size between the structure and the grain size. The dimensional similarity of granular flows is explored by employing two geometrically similar annular shear cells with High Density Polyethylene (HDPE) spheres as the granular material. A dimensional analysis of the flow reveals that the non-dimensional shear stress depends on the parameter E/ rhosgamma2d 2, i.e. (Mach number)-2, and a parameter g /gamma2d, i.e. (Froude number)-2, where E is the particle Young's modulus, rhos is the particle density, gamma is the shearing rate, and g is the acceleration of gravity. It is found that the flow in the experiments is in the elastic-inertial regime and the effect of gravitational forces is significant, particularly for the large shear cell. A simple scaling of the annular shear cell is not possible since there is at least one non-dimensional parameter E/rhosgd that cannot be kept constant in both shear cells.
机译:报道了在环形剪切单元实验中测量的玻璃球的剪切应力。为了探讨粒径的影响,实验使用四种不同的粒径d = 2、3、4和5mm进行。已经发现,相对于表观剪切速率,剪切应力遵循巴格诺定标,但是相对于粒度,其偏离了巴格诺定标。对于高固体含量,结果与有界颗粒剪切流的动力学理论存在质的差异,在动力学理论中,较大颗粒测得的无量纲剪切应力比较小颗粒测得的无量纲剪切应力高一个数量级。通过使用三种不同的边界类型来探索边界几何的影响。类型1使用铝制径向半圆筒,类型2使用以极性六边形密堆积配置的铝半球,类型3使用砂纸。结果表明,边界的几何形状对小颗粒的稀流没有影响。对于更密集的流动和/或更大的颗粒,差异是明显的。发现剪切应力与法向应力之比取决于粒径,固体浓度,并且在某些情况下取决于剪切速率。边界类型对应力比的影响仅在涉及小颗粒的稀流中才明显。实验的DEM模拟用于获得速度和固体浓度曲线。结果表明,流体中的剪切程度取决于整体固体浓度,粒径和边界类型。这些结果表明,在粒状材料与结构的相互作用中,结构的性质与粒状材料的性质一样重要。它们的相互作用还可能取决于结构和晶粒尺寸之间的相对尺寸。通过使用两个具有高密度聚乙烯(HDPE)球体的几何相似的环形剪切单元作为颗粒材料,探索了颗粒流的尺寸相似性。流动的尺寸分析表明,无量纲剪切应力取决于参数E / rhosgamma2d 2,即(马赫数)-2,和参数g / gamma2d,即(弗洛德数)-2,其中E是粒子的杨氏模量,rhos是粒子密度,gamma是剪切速率,g是重力加速度。发现实验中的流动处于弹性惯性状态,并且重力的影响是显着的,特别是对于大型剪切单元而言。环形剪切单元的简单缩放是不可能的,因为存在至少一个在两个剪切单元中不能保持恒定的无量纲参数E / rhosgd。

著录项

  • 作者

    Orlando, Andres D.;

  • 作者单位

    Clarkson University.;

  • 授予单位 Clarkson University.;
  • 学科 Applied Mechanics.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号