首页> 外文学位 >3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON.
【24h】

3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON.

机译:基于ABAQUS PYTHON的高体积分数和高长径比的复杂纤维几何RaFC材料的3-D数值模拟和分析。

获取原文
获取原文并翻译 | 示例

摘要

Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks.;In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries. Based on the multi-segments fiber geometries and aforementioned techniques, smooth curved fiber geometries depicted by cubic B-spline polynomial interpolation are obtained and different types of RaFC RVEs with high fiber filament aspect ratio (AR>3000:1) and high RVE volume fraction (VF>40.29%) are simulated by ABAQUS scripting language PYTHON programming.
机译:具有数不清的纤维取向分布和纤维几何形状的有机和无机纤维​​增强复合材料可在几种天然和合成结构中大量使用。无机玻璃纤维复合材料由于其经济的制造和定制的结构特性而被引入了许多应用。由于其固有的统计性质,必须对这种复合材料系统进行数值表征,这使得大量的实验变得非常耗时且昂贵。为了预测单向纤维复合材料(UDFC)和无规纤维复合材料(RaFC)的各种机械性能和特性,我们以数值方式开发了具有高准确性和效率并且具有在单向和垂直方向遇到的复杂纤维几何表示形式的代表体积元素(RVE)。本文首先通过在ABAQUS PYTHON中进行编程,给出了单向RaFC纤维束RVE模型(VF> 70%)的数值模拟。其次,当第二相纤维夹杂物的横截面纵横比(AR)不一定为1时,将模拟和讨论具有不同横截面形状纤维的各种RVE模型。应用改进的随机顺序吸收算法来提高RVE的体积分数(VF),其机械性能代表复合材料。第三,基于空间段最短距离(SSSD)算法,在ABAQUS PYTHON中模拟了3维RaFC材料RVE模型,该模型具有高纤维长径比(AR = 100:1)和体积分数( VF = 31.8%)。第四,通过改进的SSSD算法在MATLAB环境下获得分段多段光纤的几何形状。最后,采用包括多项式曲线拟合,分段二次和三次B样条插值在内的数值方法来优化RaFC光纤的几何形状。基于多段光纤几何结构和上述技术,获得了三次B样条多项式插值法描绘的光滑弯曲光纤几何结构,并获得了高纤维长径比(AR> 3000:1)和高RVE体积分数的不同类型的RaFC RVE (VF> 40.29%)由ABAQUS脚本语言PYTHON编程模拟。

著录项

  • 作者

    Jin, BoCheng.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Applied Mechanics.;Engineering Materials Science.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2011
  • 页码 62 p.
  • 总页数 62
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号