首页> 外文学位 >Mathematical models of chromosome motility during mitosis.
【24h】

Mathematical models of chromosome motility during mitosis.

机译:有丝分裂期间染色体运动的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

Cell division is a complex process that involves carefully orchestrated chemical and mechanical events. Tight regulation is vital during division, since a breakdown in control mechanisms can lead to serious disorders such as cancer. A key step in division is the movement of chromosomes to specific locations in the cell with remarkable precision. In higher eukaryotes, the movement of chromosomes has been well observed over the course of hundreds of years. Yet, the mechanisms underlying chromosome motility and the control of precise chromosome localizations in the cell are poorly understood. More recently, a wealth of experimental data has become available for bacterial division. Despite the long supported theory that bacteria and eukaryotes differ widely when undergoing division, it is emerging that similar mechanisms for motility and cell cycle control might be at play in both cell types. Mathematical modeling is useful in the study of these dynamic cellular environments, where it is difficult to experimentally uncover the mechanisms that drive a multitude of mechanical and chemical events. In this dissertation, we develop various mathematical models that address the question of how dynamic polymers can move large objects such as chromosomes in higher eukaryotes and in bacteria. Then, we develop models that address how chemical and mechanical signals can be coordinated to control the precise localization of a chromosome. The mathematical models proposed here employ stochastic differential equations, ordinary differential equations and partial differential equations. The models are numerically simulated to obtain solutions for various parameter values, but we also use tools from bifurcation theory, asymptotic and perturbation methods for our model analysis. Our mathematical models can not only reproduce the experimental data at hand, but also make predictions about the mechanisms underlying chromosome motility in dividing cells.
机译:细胞分裂是一个复杂的过程,涉及精心策划的化学和机械事件。在分裂过程中严格的监管至关重要,因为控制机制的崩溃可能导致严重的疾病,例如癌症。分裂的关键步骤是染色体以极高的精度移动到细胞中的特定位置。在高等真核生物中,数百年来一直观察到染色体的运动。然而,人们对染色体运动性的机制以及细胞中精确的染色体定位的控制了解甚少。最近,大量的实验数据可用于细菌分裂。尽管长期支持的理论认为细菌和真核生物在分裂时相差很大,但新兴的趋势是,在两种细胞类型中,类似的运动性和细胞周期控制机制可能都在起作用。数学模型在研究这些动态细胞环境中非常有用,在这些环境中,很难通过实验揭示驱动多种机械和化学事件的机制。在本文中,我们开发了各种数学模型,以解决动态聚合物如何移动大型物体(例如高等真核生物和细菌中的染色体)的问题。然后,我们开发模型来解决如何协调化学和机械信号来控制染色体的精确定位。这里提出的数学模型采用随机微分方程,常微分方程和偏微分方程。对模型进行了数值模拟,以获得各种参数值的解,但是我们还使用分叉理论,渐近和微扰方法的工具进行模型分析。我们的数学模型不仅可以再现手头的实验数据,还可以预测分裂细胞中染色体运动的潜在机制。

著录项

  • 作者

    Shtylla, Blerta.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Applied Mathematics.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号