首页> 外文学位 >Non-unique solutions of tunnel characterization using ground settlment profiles.
【24h】

Non-unique solutions of tunnel characterization using ground settlment profiles.

机译:使用地面沉降剖面的隧道特征非唯一解决方案。

获取原文
获取原文并翻译 | 示例

摘要

The Garner and Coffman (2011) method provides a means to characterize an unknown underground facility (UGF) by performing a back analysis of the measured or allowable ground surface settlement profile. The described method uses both static (volume loss) and numerical (finite element) methods to determine the depth, diameter, and an estimation construction method of an UGF by an analysis of the settlement at the ground surface induced by tunneling.;The static characterization equations used in the Garner and Coffman (2011) method are based on the original work by Peck (1969) and subsequent refinements proposed by Cording and Hansmire (1975), 0' Reilly and New (1982), Aoyagi (1995) and Mair and Taylor (1997). The static methods, when coupled with a statistical analysis of the measured or allowable surface settlement profile, provide an initial estimate of both tunnel depth and diameter by attributing the volume of the ground surface settlement to the compression of the excavated area at depth. These methods rely on empirical coefficients developed from a database of existing tunneling projects from around the world. If multiple tunnels are present then a superposition technique is used to determine the settlement trough induced by each tunnel. After an initial estimation of a UGF's configuration, a numerical model is constructed to confirm and refine the initial estimate. The numerical analysis for each tunnel is performed using two (2) dimensional finite element software. As the simulation of three (3) dimensional processes during tunneling are critical to correctly determine the ground surface settlement induced by tunnel construction. The finite element simulation is then iterated (at different geometries) until the predicted UGF configuration produces the measured or allowable surface settlement profile. The Garner and Coffman (2011) method was calibrated using settlement data from eighteen existing tunneling projects in Bangkok, Taipei, Singapore, London, and Heinenoord. Validation of the Garner and Coffman (2011) method was then conducted using data from sixteen additional tunneling projects at the same sites which were not involved in the calibration process. The Garner and Coffman method (2011) identified a relationship between the groundloss coefficient and the finite element contraction increment (using Plaxis v8.6, 2010). For the validation sites the Garner and Coffman method (2011) predicted facility depths within 12 percent of the actual facility depth, facility diameter within 10 percent of the actual facility diameter, and facility center to center spacing within 19 percent of the actual center to center spacing. The Garner and Coffman (2011) method provides a predicted facility configuration that overlaps the actual configuration of the facility for 88 percent of the validation sites, and a predicted facility configuration that is within the actual configuration for 44 percent of the validation sites.
机译:Garner and Coffman(2011)方法提供了一种方法,可以通过对测量或允许的地面沉降曲线进行反分析来表征未知的地下设施(UGF)。所描述的方法使用静态(体积损失)和数值(有限元)方法来确定UGF的深度,直径以及通过分析隧道引起的地面沉降来估算UGF的估算方法。 Garner和Coffman(2011)方法中使用的方程是基于Peck(1969)的原始工作以及Cording和Hansmire(1975),0'Reilly和New(1982),Aoyagi(1995)和Mair和泰勒(1997)。静态方法与对测得的或允许的地面沉降曲线的统计分析相结合时,可以通过将地表沉降的体积归因于深处开挖区域的压缩来提供隧道深度和直径的初始估计。这些方法依靠从世界各地现有隧道项目的数据库中开发的经验系数。如果存在多个隧道,则使用叠加技术确定每个隧道引起的沉降谷。在对UGF的配置进行初始估计之后,将构建一个数值模型来确认和完善初始估计。使用两(2)维有限元软件对每个隧道进行数值分析。由于模拟隧道过程中的三(3)维过程对于正确确定由隧道施工引起的地表沉降至关重要。然后迭代有限元模拟(在不同的几何形状下),直到预测的UGF构造生成测量或允许的表面沉降轮廓为止。 Garner and Coffman(2011)方法使用来自曼谷,台北,新加坡,伦敦和喜力诺德的18个现有隧道项目的沉降数据进行了校准。然后,使用来自同一地点的16个其他隧道项目的数据进行了Garner和Coffman(2011)方法的验证,这些数据未涉及校准过程。 Garner and Coffman方法(2011年)确定了地面损耗系数与有限元收缩增量之间的关系(使用Plaxis v8.6,2010)。对于验证站点,Garner和Coffman方法(2011)预测设施深度在实际设施深度的12%以内,设施直径在实际设施直径的10%以内,设施中心到中心的间距在实际中心到中心的19%以内间距。 Garner and Coffman(2011)方法提供了一个预测的设施配置,该配置与88%的验证站点的设施的实际配置重叠,而一个预测的设施配置在44%的验证站点的实际配置内。

著录项

  • 作者

    Garner, Cyrus D.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Engineering Civil.
  • 学位 M.S.
  • 年度 2011
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号