首页> 外文学位 >A Three-Dimensional FDTD Magnetized Cold Plasma Model for Global Electromagnetic Wave Propagation.
【24h】

A Three-Dimensional FDTD Magnetized Cold Plasma Model for Global Electromagnetic Wave Propagation.

机译:用于整体电磁波传播的三维FDTD三维磁化冷等离子体模型。

获取原文
获取原文并翻译 | 示例

摘要

For almost two decades, the finite-difference time-domain (FDTD) method has been applied towards modeling electromagnetic (EM) wave propagation within the Earth- ionosphere system. As computational resources continued to improve, global three-dimensional (3-D) FDTD models were developed and employed for studies of Schumann resonances, remote sensing of oil fields, remote sensing of ionospheric disturbances, and for modeling hypothesized electromagnetic earthquake precursors, etc.. All of the existing global FDTD models to date, however, have utilized an electrical conductivity profile to represent the ionosphere. As a result, the ionosphere is treated as a simple isotropic medium that ignores the influence of the geomagnetic field. This appears to be adequate in calculating the average propagation of EM waves below ∼100km altitude and at frequencies less than ∼1KHz over thousands of kilometers. However, by not including the anisotropic geomagnetic field, these global FDTD models are not capable of modeling many geomagnetism effects such as Faraday rotation in the ionosphere, whistler wave injection, and lightning-induced electron precipitation.;This dissertation aims to advance the global latitude-longitude FDTD model originally developed by Simpson and Taflove and having an isotropic ionosphere to an Earth-ionosphere model that accounts for the physics introduced by the magnetized ionospheric plasma. To generate this new global model, a 3-D Cartesian-coordinate magnetized cold plasma algorithm is first developed and rigorously validated. This algorithm has the capability to simulate wave behaviors in cold plasma under applied magnetic fields of arbitrary direction and magnitude. Plasma effects contributed by electrons, positive, and negative ions may all be included by this algorithm. A magnetic-field-independent absorbing boundary condition (ABC) is then proposed to truncate the computational domains that employ the cold plasma algorithm. Next, the Cartesian-coordinate magnetized cold plasma algorithm is fully adapted to Simpson and Taflove's latitude-longitude mesh to construct the new global ionospheric plasma FDTD model. This new simulator is believed to be the first. It will in particular permit higher frequency (above ∼1KHz) and higher altitude (above an altitude of ∼100km) propagation studies than permitted by all of the previous global models involving isotropic conductivity profiles.
机译:近二十年来,有限差分时域(FDTD)方法已用于模拟地球电离层系统中电磁(EM)波的传播。随着计算资源的不断提高,全球三维(3D)FDTD模型得以开发并用于舒曼共振研究,油田遥感,电离层扰动遥感以及对假设的电磁地震前兆进行建模等。迄今为止,所有现有的全球FDTD模型都利用电导率曲线来表示电离层。结果,电离层被视为简单的各向同性介质,而忽略了地磁场的影响。这似乎足以计算海拔约100 km以下,频率小于1KHz的数千个公里内EM波的平均传播。但是,由于不包括各向异性地磁场,这些全局FDTD模型不能对许多地磁效应进行建模,例如电离层中的法拉第旋转,惠斯勒波注入和雷电诱发的电子降水。最初由辛普森和塔夫洛夫(Simpson and Taflove)开发的FDTD模型,其地球电离层模型具有各向同性的电离层,该模型解释了磁化电离层等离子体引入的物理学。为了生成这个新的全局模型,首先开发了3D笛卡尔坐标的磁化冷等离子体算法并进行了严格验证。该算法具有在任意方向和大小的施加磁场下模拟冷等离子体中的波行为的能力。该算法可以包括由电子,正离子和负离子引起的等离子体效应。然后提出了与磁场无关的吸收边界条件(ABC),以截断采用冷等离子体算法的计算域。接下来,笛卡尔坐标的磁化冷等离子体算法完全适用于辛普森和塔夫洛夫的经纬网格,以构建新的全球电离层等离子体FDTD模型。该新模拟器被认为是第一个。与以前所有涉及各向同性电导率剖面的全球模型所允许的相比,它特别允许更高的频率(〜1KHz以上)和更高的海拔(〜100km以上的海拔)传播研究。

著录项

  • 作者

    Yu, Yaxin.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Electronics and Electrical.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号