首页> 外文学位 >Advanced Preprocessing Methods for Optimization of Chemometric Algorithms for Gas Chromatography.
【24h】

Advanced Preprocessing Methods for Optimization of Chemometric Algorithms for Gas Chromatography.

机译:用于优化气相色谱化学计量算法的高级预处理方法。

获取原文
获取原文并翻译 | 示例

摘要

Preprocessing algorithms have a huge impact on the analytical precision and accuracy of chemometric methods used to reduce the data collected on chromatographic instrumentation to chemical information that is useful to the analyst. Piecewise alignment is one preprocessing tool to maximize the retention time precision of chromatographic data and improve the chemometric analysis results. The algorithm is used with Gas chromatography with a flame ionization detector (GC-FID) and gas chromatography with mass spectral detection (GC-MS). These instruments are used to study how well the data can not only be aligned, but how much information can be gleaned from the data and how fast the process can be run. Parallel factor analysis (PARAFAC) can be used in conjunction with alignment to extract information from stacked GC-MS data Separations of 13C labeled signals from 12C standard signals for metabalomic data show that even with almost no separation in the chromatographic dimension, a chromatographic data stacking procedure used to increase the dimensionality of the GC-MS data can be used to separate these components as long as there is proper experimental design and adequate retention time precision. Alignment algorithms can take a significant portion of the total computation time of the data analysis process. Therefore, optimization of computational time is performed by minimizing the number of data points for the separation. This minimization of data is performed using boxcar averaging as a form of data reduction, which impacts the signal to noise ratio (S/N), the size of the data and the speed of the algorithms for alignment. Results indicate that data can be reduced to as low as 15 points defining the peak width at the base prior to alignment without significant loss of chemical information. Data reduction can also be used to increase the S/N of isothermal separations. Since isothermal GC separations have linearly increasing peak widths, an increasing boxcar averaging algorithm is developed to reduce the last peak width to be the same width as the first peak, with a concurrent S/N increase with increasing boxcar size. The method for isothermal GC separations, referred to as temporally increasing boxcar summation (TIBS) uses calibration standards to calculate the boxcar window size to be adjusted as a function of the retention time. All of these data analysis tools are designed to increase the speed, precision and accuracy of chromatographic data analysis.
机译:预处理算法对化学计量学方法的分析精度和准确性产生巨大影响,化学计量学方法用于将色谱仪器上收集的数据减少为对分析人员有用的化学信息。逐段比对是一种预处理工具,可最大限度地提高色谱数据的保留时间精度并改善化学计量分析结果。该算法与带有火焰离子检测器的气相色谱仪(GC-FID)和带有质谱检测器的气相色谱仪(GC-MS)一起使用。这些工具用于研究数据不仅可以对齐的程度如何,还可以从数据中收集多少信息以及流程运行的速度。并行因子分析(PARAFAC)可与比对结合使用,以从堆叠的GC-MS数据中提取信息代谢组学数据的13C标记信号与12C标准信号的分离表明,即使色谱尺寸几乎没有分离,色谱数据堆叠只要有适当的实验设计和足够的保留时间精度,用于增加GC-MS数据维数的步骤即可用于分离这些组分。对齐算法可能会占用数据分析过程总计算时间的很大一部分。因此,通过最小化用于分离的数据点的数量来执行计算时间的优化。使用Boxcar平均作为数据缩减的一种形式来执行数据的最小化,这会影响信噪比(S / N),数据大小和对齐算法的速度。结果表明,在比对之前,可以将数据减少到15个点,这些点定义了碱基的峰宽,而没有明显的化学信息损失。数据减少还可用于增加等温分离的信噪比。由于等温GC分离具有线性增加的峰宽,因此开发了增加的棚车平均算法以将最后一个峰宽减小到与第一个峰相同的宽度,同时信噪比随棚车尺寸的增加而增加。等温GC分离方法(称为暂时增加棚车总和(TIBS))使用校准标准来计算要根据保留时间进行调整的棚车窗尺寸。所有这些数据分析工具均旨在提高色谱数据分析的速度,准确性和准确性。

著录项

  • 作者

    Nadeau, Jeremy S.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号