首页> 外文学位 >Phosphoregulation of HMG-CoA reductase in fission yeast.
【24h】

Phosphoregulation of HMG-CoA reductase in fission yeast.

机译:裂变酵母中HMG-CoA还原酶的磷酸化作用。

获取原文
获取原文并翻译 | 示例

摘要

HMG-CoA reductase (HMGR), a highly conserved, membrane-bound enzyme, catalyzes a rate-limiting step in sterol and isoprenoid biosynthesis and is the primary target of hypocholesterolemic drug therapy. HMGR activity is tightly regulated to ensure maintenance of lipid homeostasis, disruption of which is a major cause of human morbidity and mortality. The general features of HMGR regulation, including a requirement for the HMGR-binding protein Insig, are remarkably conserved between mammals and fungi, including Schizosaccharomyces pombe.;Insig functions as a central regulator of mammalian cholesterol homeostasis by regulating HMGR. Insig both accelerates the degradation of HMGR and suppresses HMGR transcription. The fission yeast Schizosaccharomyces pombe encodes homologs of Insig and HMGR called ins1+ and hmg1+. In this thesis, I sought to determine whether Ins1 regulates Hmg1, and to reveal the mechanism of regulation. I show that Ins1 binding to Hmg1 inhibits enzyme activity by promoting phosphorylation of the Hmg1 active site. Furthermore, I show that Hmg1 activity is tightly regulated by glucose availability through Ins1-dependent phosphorylation, and that ablation of this system results in inappropriately high rates of sterol synthesis during glucose deprivation. Thus, I have described the first example of Insig function outside of lipid sensing, revealing a novel signal transduction pathway and a physiologically important mechanism by which cells can link the rate of sterol biosynthesis to glucose availability.
机译:HMG-CoA还原酶(HMGR)是一种高度保守的膜结合酶,催化固醇和类异戊二烯生物合成中的限速步骤,是降血脂药物治疗的主要目标。 HMGR活性受到严格监管,以确保维持脂质体内平衡,脂质体内平衡的破坏是人类发病和死亡的主要原因。 HMGR调控的一般特征(包括对HMGR结合蛋白Insig的需求)在哺乳动物和真菌(包括粟酒裂殖酵母)之间显着保守; Insig通过调节HMGR充当哺乳动物胆固醇稳态的中央调节器。 Insig既可以加速HMGR的降解,又可以抑制HMGR转录。裂变酵母粟酒裂殖酵母编码Insig和HMGR的同系物,称为ins1 +和hmg1 +。在本文中,我试图确定Ins1是否调节Hmg1,并揭示其调节机制。我表明,Ins1与Hmg1的结合通过促进Hmg1活性位点的磷酸化来抑制酶的活性。此外,我显示Hmg1活性受到Ins1依赖性磷酸化的葡萄糖可用性的严格调控,并且该系统的消融会导致葡萄糖剥夺期间固醇合成的速率过高。因此,我描述了脂质传感之外的Insig功能的第一个例子,揭示了一种新颖的信号转导途径和一种重要的生理机制,细胞可以通过该机制将固醇的生物合成速率与葡萄糖的利用率联系起来。

著录项

  • 作者

    Burg, John Stoddard.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Cell.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号