首页> 外文学位 >Probing the electronic properties of atomically thin graphitic layers with optical spectroscopy.
【24h】

Probing the electronic properties of atomically thin graphitic layers with optical spectroscopy.

机译:用光谱学探测原子薄石墨层的电子性质。

获取原文
获取原文并翻译 | 示例

摘要

Since its discovery, graphene (a mono-layer of graphitic layer) has attracted tremendous attention from the physics community. Being one-atom thick, Single Layer Graphene (SLG) is an ideal model for fundamental studies of 2-Dimensional (2D) systems. One of the most interesting aspects of SLG is the resemblance of its electronic structure to an important class of particles in high energy physics, the Dirac massless Fermions, i.e., massless Fermions with 4 flavors. Such an electronic structure leads to many peculiar phenomena in fundamental physics and many desirable properties for technological applications of this new material. Therefore, a basic understanding of the electronic properties of SLG is of the greatest importance in this field.;In this thesis, the electronic structure of single- and few-layer graphene is investigated with optical spectroscopic techniques. In the first part, the optical absorption spectrum of SLG is measured. In the mid/near infrared range, the absorbance is a universal constant equal to pialpha = 2.29%, a being the fine structure constant, independent of photon energies, the particular sample characteristics and all parameters describing the band structure of SLG. This reflects a fundamental fact that the charge carriers in SLG indeed behave as 2D Dirac massless Fermions at low energies. Since each Fermionic species absorbs by pialpha/4, the 4 spin-nodal flavors of Fermions in SLG gives an absorbance of pialpha. On the other hand, strong modifications of optical absorption in the visible/UV range due to many body interactions are observed. Such effects give rise to a breakdown of the universal absorbance and experimental signatures of saddle point excitons.;In the second part, the electronic structure of Bi-Layer Graphene (BLG) is studied in the presence of strong applied electric fields. In contrast to SLG, the low-energy electrons in BLG are described as chiral massive Fermions. The linearly dispersing bands in SLG are replaced by split hyperbolic bands due to inter-layer interactions. Therefore, the existence of van Hove singularities in the Joint Density of States (JDOS) gives rise to optical resonance features that are tunable by an applied electric field. This interesting behavior is investigated in a BLG field effect transistor (FET). One striking observation at high gate bias fields is that a band gap is opened and its size is tunable with the electric field strength. This is a direct consequence of field-induced inversion symmetry breaking in BLG, which lifts the degeneracy at the K-point of the Brillouin zone. Band gaps as large as 200 meV can be achieved, which implies potential applications in room temperature FETs.;In the third part of the thesis, the electronic structure of Few-Layer Graphene (FLG) and its relationship to bulk graphite is studied. Compared to SLG, the electronic structure of FLG is much richer and more flexible for engineering purposes. Two different families of crystallographic orientations are found in FLG, the Bernel (ABABAB...) and rhombohedral (ABCABC...) stacking. Dramatic differences of the electronic properties between the two cases are observed. For Bernel FLG, the electronic structure is derived by zone folding of the band structure of bulk graphite and can be decomposed into independent massless and massive components with different band gaps. For rhombohedral FLG, due to its peculiar electronic structure, the JDOS has divergent (1-Dimensional (1D) like) singularities, as revealed in the measured absorption spectra. Furthermore, the presence of surface conducting states and its relationship to semimetallic rhombohedral bulk graphite are discussed.;Finally, results concerning the electronic properties of other atomically thin layered materials are presented. Particular attention is given to a particular semiconducting transition-metal dichalcogenide material, MoS2. We find that a dramatic crossover from indirect to direct gap of the material occurs in the monolayer limit. This result suggests interesting opportunities for other layered materials in the limit of few atomic layers.
机译:自发现以来,石墨烯(单层石墨层)引起了物理学界的极大关注。单层石墨烯(SLG)具有一个原子的厚度,是二维(2D)系统基础研究的理想模型。 SLG最有趣的方面之一是其电子结构类似于高能物理学中一类重要的粒子,狄拉克无质量费米子,即4种口味的无质量费米子。这种电子结构导致了基本物理学中的许多特殊现象,以及这种新材料在技术应用中的许多理想特性。因此,对SLG的电子性质的基本了解在该领域具有最重要的意义。本文采用光学光谱技术研究了单层和少层石墨烯的电子结构。在第一部分中,测量了SLG的光吸收光谱。在中/近红外范围内,吸光度是一个等于pialpha = 2.29%的通用常数,a是精细结构常数,与光子能量,特定样品特性和描述SLG谱带结构的所有参数无关。这反映了一个基本事实,即SLG中的载流子确实在低能量下表现为2D Dirac无质量费米子。由于每个Fermionic物种都被pialpha / 4吸收,因此SLG中Fermions的4种自旋结味可提供pialpha的吸光度。另一方面,由于许多身体相互作用,观察到了在可见/紫外线范围内光吸收的强烈变化。这种效应导致了鞍点激子的通用吸收率和实验特征的分解。第二部分,在强外加电场作用下研究了双层石墨烯(BLG)的电子结构。与SLG相反,BLG中的低能电子被描述为手性块状费米子。由于层间的相互作用,SLG中的线性分散带被分裂的双曲线带取代。因此,在状态联合密度(JDOS)中存在van Hove奇异性导致了光学共振特征,该特征可由施加的电场调节。在BLG场效应晶体管(FET)中研究了这种有趣的行为。在高栅极偏置场上的一个引人注目的观察结果是,带隙被打开,并且其大小随电场强度可调。这是BLG中场致反演对称性破坏的直接结果,这会抬高布里渊区K点的简并性。可以实现高达200meV的带隙,这暗示着其在室温FET中的潜在应用。在论文的第三部分中,研究了少量层石墨烯(FLG)的电子结构及其与体石墨的关系。与SLG相比,FLG的电子结构更加丰富且更加灵活,可用于工程设计。在FLG中发现了两个不同的晶体学取向家族,即Bernel(ABABAB ...)和菱形(ABCABC ...)堆叠。观察到两种情况下电子性能的巨大差异。对于Bernel FLG,电子结构是通过块状石墨的能带结构的区域折叠得出的,并且可以分解为具有不同带隙的独立的无质量和块状组件。对于菱面体FLG,由于其独特的电子结构,JDOS具有发散的(一维(1D)样)奇异性,如测得的吸收光谱中所示。此外,还讨论了表面导电态的存在及其与半金属菱形体石墨的关系。最后,给出了与其他原子薄层材料的电子性能有关的结果。特别注意特定的半导体过渡金属二卤化二硫化锡材料MoS2。我们发现,在单层范围内发生了从材料的间接间隙到直接间隙的巨大跨越。这一结果表明,在原子层数很少的情况下,其他层状材料的有趣机会。

著录项

  • 作者

    Mak, Kin Fai.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Physics Condensed Matter.;Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号