首页> 外文学位 >Performance des pieces coulees selon le procede de la mousse perdue a partir des alliages aluminium-magnesium-silicium et aluminium-cuivre.
【24h】

Performance des pieces coulees selon le procede de la mousse perdue a partir des alliages aluminium-magnesium-silicium et aluminium-cuivre.

机译:铝镁硅合金和铝铜合金采用失泡工艺的铸件性能。

获取原文
获取原文并翻译 | 示例

摘要

The current study comprises an analysis of the effects of the handling of liquid metal on the microstructure and mechanical properties of industrially-produced Al-Si-Mg and Al-Cu alloy castings using the lost-foam casting method. Moreover, this work allows for the transfer of technology by means of a comparison between castings prepared in a laboratory under ideal conditions and those actually produced in industry, in the hopes of ameliorating the quality of the end result products.;A study of the effects of the casting parameters on the microstructures of the 356, 357 and 220 obtained from lost-foam casting was carried out using various analysis techniques including optical microscopy, image analysis and scanning electron microscopy. An extensive analysis of the mechanical properties was conducted using a large number of tensile samples. In light of the results obtained, it was observed that the chemical composition of the strontium master alloys used had no effect on the microstructure or the mechanical properties of the alloys studied.;The increase in the size of eutectic silicon particles in the presence of boron and strontium demonstrate that these two elements react together to form the SrB6 compound which reduces the respective effects of the individual elements. That is to say, the grain refinement and eutectic modification provided by boron and strontium are reduced. In addition, the microstructures of samples obtained from all mold types revealed that this interaction is independent of the solidification rate.;Rapid cooling of the metal brings about a reduction in the size of the eutectic silicon particles in the as-cast condition. However, the T6 heat treatment can cancel this effect if the silicon particles enter the growth phase. The growth of these particles in the bolt boss section is not as rapid as in the combustion chamber section, indicating that the Si particle size depends greatly on the geometry of the section of the casting in question.;First of all, the phases and other microstructural elements of the alloys used (220, 356 and 357) were characterized using thermal analysis. Next, the effects of the handling of the liquid metal (modification, grain refinement and degassing) of the pieces produced via the LFC method on their microstructure and mechanical properties (tensile and hardness) were evaluated and compared to samples stemming from other types of molds (standard metallic ASTM B108, an L-shaped large section metallic mold, and a refractory mold which provided directional solidification).;Hydrogen plays a predominant role in the formation of porosity. On the other hand, the foam pattern leaves an impression on the casting surface which, having the appearance of pores, may be confused with actual gas or shrinkage pores. These impressions are mainly present for the samples coming from the combustion chamber section due to its narrow width (∼10 mm). Moreover, the solidification rate affects the porosity by reducing the time required for it to form. Thus, a high rate of solidification generates fewer pores. Therefore, the occurrence of porosity is dictated by a combination of the hydrogen level present and the solidification rate employed, as was shown by the results obtained from the refractory mold which exhibited directional solidification.;The hardness values as well as the elastic limit vary according to the chemical composition of the alloy studied. Gains of 17% and 24% were observed for the hardness and elastic limit for the 357 alloy compared to the 356 alloy. This difference is attributed to the different concentrations of magnesium which, during the T6 heat treatment, precipitate as Mg2Si. The hardness and elastic limit of the 220 alloy increased by 18% and 15%, respectively, compared to that measured for the 356 alloy. In this case, the hardening phase, Al2Cu, is responsible for this increase. All increases in hardness are independent of the type of mold used. The addition of hydrogen reduces the hardness by ∼25%, regardless of the alloy or casting technique used. Moreover, due to the increased formation of porosity in the presence of H2, the alloy ductility is severely affected as fracture occurs much more easily. The fracture of the aluminum alloys will depend on the microstructure, strain rate used and the temperature of testing. (Abstract shortened by UMI.)
机译:目前的研究包括分析液态金属处理对使用消失模泡沫铸造法工业生产的Al-Si-Mg和Al-Cu合金铸件的组织和力学性能的影响。此外,这项工作可以通过比较实验室在理想条件下制备的铸件与工业上实际生产的铸件之间的技术转让,以期改善最终结果产品的质量。使用包括光学显微镜,图像分析和扫描电子显微镜在内的各种分析技术,对失泡铸造获得的铸造参数356、357和220的微观结构进行了分析。使用大量拉伸样品对机械性能进行了广泛的分析。根据获得的结果,观察到所使用的锶中间合金的化学组​​成对所研究合金的微观结构或机械性能没有影响。;在存在硼的情况下,共晶硅颗粒的尺寸增加锶和锶证明这两个元素一起反应形成SrB6化合物,从而降低了各个元素的作用。也就是说,减少了硼和锶提供的晶粒细化和共晶改性。另外,从所有模具类型获得的样品的微观结构表明,这种相互作用与固化速率无关。金属的快速冷却导致铸态条件下共晶硅颗粒的尺寸减小。但是,如果硅颗粒进入生长阶段,T6热处理可以消除这种影响。这些颗粒在螺栓凸台部分中的生长不如在燃烧室部分中那样快,这表明Si颗粒大小在很大程度上取决于所讨论铸件的部分的几何形状。通过热分析来表征所用合金(220、356和357)的微观结构元素。接下来,评估了通过LFC方法生产的零件的液态金属处理(改性,晶粒细化和脱气)对其微观结构和机械性能(拉伸和硬度)的影响,并将其与其他类型的模具产生的样品进行了比较(标准的ASTM B108金属模具,L形的大截面金属模具和提供定向凝固的耐火模具)。;氢在孔隙形成中起主要作用。另一方面,泡沫图案在铸件表面上留下压痕,该压痕具有孔的外观,可能与实际的气体或收缩孔相混淆。这些痕迹主要存在于来自燃烧室部分的样品,因为其宽度较窄(约10 mm)。而且,固化速率通过减少其形成所需的时间来影响孔隙率。因此,高固化速率产生较少的孔。因此,孔隙的产生是由所存在的氢含量和所采用的固化速率共同决定的,正如从具有定向固化性的耐火模具获得的结果所表明的那样;硬度值和弹性极限根据合金的化学成分与356合金相比,观察到357合金的硬度和弹性极限分别提高了17%和24%。这种差异归因于镁的不同浓度,在T6热处理期间,镁的沉淀形式为Mg2Si。与356合金相比,220合金的硬度和弹性极限分别提高了18%和15%。在这种情况下,硬化阶段Al2Cu是造成这种增加的原因。所有硬度的增加均与所用模具的类型无关。不管使用何种合金或铸造技术,添加氢都会使硬度降低约25%。而且,由于在H 2存在下增加的孔隙形成,严重地影响了合金的延展性,因为更容易发生断裂。铝合金的断裂将取决于显微组织,使用的应变率和测试温度。 (摘要由UMI缩短。)

著录项

  • 作者

    Paradis, Mathieu.;

  • 作者单位

    Universite du Quebec a Chicoutimi (Canada).;

  • 授予单位 Universite du Quebec a Chicoutimi (Canada).;
  • 学科 Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号