首页> 外文学位 >Scanning magnetoresistance microscopy for magnetically labeled DNA microarrays.
【24h】

Scanning magnetoresistance microscopy for magnetically labeled DNA microarrays.

机译:扫描磁阻显微镜用于磁性标记的DNA微阵列。

获取原文
获取原文并翻译 | 示例

摘要

In this work, imaging of magnetically labeled DNA spots using a single magnetic tunnel junction (MTJ) sensor in a scanning probe microscopy setup is demonstrated. This new approach offers the potential to image centimeter-scale arrays of thousands of DNA spots while still achieving the micron-scale spatial resolution required to resolve individual magnetic markers; at the same time avoiding the need to expose the sensor to fluids or biological materials. By combining the MTJ sensor widely used in magnetic recording technology with magnetic particles as the detection labels for the DNA microarrays, we are developing the fundamental technology for quantitative DNA assays using a low-cost instrument inspired by the hard disk-drive.;Using conventional DNA microarray protocols, single stranded DNA (ss-DNA) probe spots are printed on a silanized glass slide. A test sample containing a known quantity of biotinylated target ss-DNA is introduced and hybridization is allowed to occur. The hybridized DNA is labeled with streptavidin-functionalized 2.8 microm paramagnetic particles (Dynal) with target DNA concentrations in the range of 1 pM to 1 nM producing detectable changes in bead coverage. A MTJ sensor is used as a non-contact scanning probe to measure the induced magnetic stray fields from the particles and to generate the magnetic image of the magnetically labeled DNA spots.;Scanning the MTJ sensor across the array allows both a large scanning area and high spatial resolution (∼1microm). Quantitative imaging requires that the sensor-sample spacing be relatively constant. The intrinsic flatness of microarray substrates is ∼2 microns/cm and scan areas larger than 5 cm2 have been demonstrated. Field variation induced by sample flatness can be corrected by encoding magnetic reference marks on the substrate. Furthermore, increasing the scan speed helps to reduce the l/f noise and performing signal averaging through multiple (N) scanning measurements over the same area for √N improvement in SNR yielding a 100:1 dynamic range and a detection limit of 30 magnetic particles within a single 100microm diameter DNA spot.
机译:在这项工作中,演示了在扫描探针显微镜设置中使用单个磁隧道结(MTJ)传感器对磁性标记的DNA点进行成像。这种新方法提供了对成千上万个DNA斑点的厘米级阵列成像的潜力,同时仍实现了解决单个磁性标记所需的微米级空间分辨率。同时避免将传感器暴露于液体或生物材料中。通过将磁性记录技术中广泛使用的MTJ传感器与磁性颗粒作为DNA微阵列的检测标记相结合,我们正在开发一种低成本的基本技术,该技术使用受硬盘驱动器启发的低成本仪器进行定量DNA分析。 DNA微阵列方案,将单链DNA(ss-DNA)探针斑点印在硅烷化的载玻片上。引入包含已知量的生物素化靶标ss-DNA的测试样品,并允许发生杂交。杂交的DNA用链霉亲和素功能化的2.8微米顺磁性颗粒(Dynal)标记,目标DNA浓度在1 pM至1 nM范围内,可检测到磁珠覆盖率变化。 MTJ传感器用作非接触式扫描探针,可测量从颗粒中感应出的磁杂散场并生成磁性标记的DNA点的磁图像。在整个阵列上扫描MTJ传感器可实现较大的扫描面积和高空间分辨率(约1微米)。定量成像要求传感器-样本间距相对恒定。微阵列基板的固有平坦度约为2微米/厘米,扫描面积大于5平方厘米。可以通过在基板上编码磁性参考标记来校正由样品平整度引起的场变化。此外,提高扫描速度有助于降低l / f噪声,并通过在同一区域进行多次(N)次扫描测量来执行信号平均,以达到√N的SNR改善,从而产生100:1的动态范围和小于30的磁检测限单个100μm直径的DNA点内的颗粒。

著录项

  • 作者

    Chan, Mei Lin.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号