首页> 外文学位 >Instrumental analysis of scanning force microscopy for nanostructured biomaterials: Applications to cartilage.
【24h】

Instrumental analysis of scanning force microscopy for nanostructured biomaterials: Applications to cartilage.

机译:扫描力显微镜对纳米结构生物材料的仪器分析:在软骨中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Instrumental analysis was used to provide new capabilities for scanning force microscopy (SFM) investigations of nanoscale biomaterials. Both imaging and force measurements were considered.; For SFM imaging, we formulated the first general purpose reconstruction technique that can accurately recover biomolecular dimensions from tip broadened data. SFM probes used in biomolecule imaging are first calibrated using the blind reconstruction algorithm, modified to be more accurate at length scales of a few nanometers. The calibrated probe geometry is then used to simulate images from molecular models that are compared with the experimental SFM image data in a nonlinear regression loop. Using simulated and experimental images of the cartilage proteoglycan aggrecan we show that the reconstructed model has lateral dimensions commensurate with transmission electron microscopy data. The model can be used to infuse image analysis with a priori information that describes relevant structures of the molecule or surface under study. We demonstrate this using a model that connects tertiary structures of aggrecan, measured by SFM, with primary structure information obtained from cDNA analysis. Aggrecan data was analyzed with a focus on recent information regarding its catabolism by aggrecanase. The distribution of lengths, with a maximum of 450 nm and mean of 300 nm, suggested that a large fraction of molecules in vivo exist in a partially catabolized state. Comparing the length distribution with current models regarding the degradation of aggrecan by aggrecanase, our results suggest that 48% of aggrecan molecules are cleaved at either the E(1480)-(1481)G or E(1667)-(1668)G aggrecanase cleavage sites.; For SFM force measurements, we increased the range and bandwidth possible in viscous (i.e. liquid) environments using high-speed digitization and a dynamical cantilever model. We first showed that a multimodal beam model was necessary to reconstruct forceseparation curves from high-bandwidth measurements of tip motion in the snap-to-contact. We then analyzed the model and showed that even when the underlying force-separation is arbitrarily nonlinear, the reconstruction can be solved using linear transformations. This is in contrast to previous techniques that used low-order expansions or complicated nonlinear solvers. The reconstruction problem is ill-posed but we show that useful solutions can be obtained using Tikhonov regularization and L-curve analysis. We demonstrated the utility of the technique by performing one of the only measurements of single colloid interactions where the characteristic size of the colloid was smaller than the length scale for the interaction. This experimentally demonstrated the limitations of the Derjaguin approximation and agreed with theoretical predictions that the Derjaguin approximation overestimates the force on small particles. Replacing the Derjaguin approximation with surface element integration provided a significantly better description of the experimental data. The study should be useful for future investigations of polymers, biological molecules, and other nanoscale colloids where the Derjaguin approximation does not apply.
机译:仪器分析被用来为纳米级生物材料的扫描力显微镜(SFM)研究提供新的功能。考虑了成像和力的测量。对于SFM成像,我们制定了第一个通用重建技术,该技术可以从针尖加宽的数据中准确恢复生物分子的尺寸。首先使用盲重建算法对生物分子成像中使用的SFM探针进行校准,并将其修改为在几纳米的长度尺度上更加精确。然后,将经过校准的探头几何形状用于模拟分子模型中的图像,这些图像在非线性回归回路中与实验SFM图像数据进行比较。使用软骨蛋白聚糖聚集蛋白聚糖的模拟和实验图像,我们表明重建的模型具有与透射电子显微镜数据相当的横向尺寸。该模型可用于在图像分析中加入描述所研究分子或表面相关结构的先验信息。我们使用连接通过SFM测量的聚集蛋白聚糖的三级结构与从cDNA分析获得的一级结构信息的模型来证明这一点。对Aggrecan数据进行了分析,重点是关于聚集蛋白聚糖酶分解代谢的最新信息。长度的分布最大为450 nm,平均为300 nm,这表明体内大部分分子以部分分解代谢状态存在。将长度分布与关于聚糖蛋白聚糖酶降解蛋白聚糖的当前模型进行比较,我们的结果表明48%的蛋白聚糖分子在E(1480)-(1481)G或E(1667)-(1668)G蛋白聚糖酶裂解中被裂解。网站。对于SFM力测量,我们使用高速数字化和动态悬臂模型增加了在粘性(即液体)环境中可能的范围和带宽。我们首先表明,多模式梁模型对于从速动接触中尖端运动的高带宽测量重建力分离曲线是必要的。然后,我们对模型进行了分析,结果表明,即使基本的力分离是任意非线性的,也可以使用线性变换来解决重构问题。这与使用低阶展开或复杂的非线性求解器的先前技术形成对比。重建问题不适当,但我们证明可以使用Tikhonov正则化和L曲线分析获得有用的解决方案。我们通过执行单个胶体相互作用的唯一测量之一证明了该技术的实用性,其中胶体的特征尺寸小于相互作用的长度尺度。这通过实验证明了Derjaguin逼近的局限性,并与理论预测一致,即Derjaguin逼近会高估小颗粒上的力。用表面元素集成代替Derjaguin逼近可以更好地描述实验数据。该研究对于聚合物,生物分子和其他不适用Derjaguin近似的纳米级胶体的未来研究应是有用的。

著录项

  • 作者

    Todd, Brian Alexander.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Biomedical.; Biophysics Medical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程 ; 生物物理学 ; 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号