首页> 外文学位 >Unified mathematical model for linear and nonlinear viscoelastic predictions of linear monodisperse and polydisperse and branched polymers.
【24h】

Unified mathematical model for linear and nonlinear viscoelastic predictions of linear monodisperse and polydisperse and branched polymers.

机译:用于线性单分散和多分散以及支链聚合物的线性和非线性粘弹性预测的统一数学模型。

获取原文
获取原文并翻译 | 示例

摘要

We present an application of a single-chain mean-field model to entangled linear blends and star branched systems. Slip-links instead of tubes are employed. The entanglements on a chain are destroyed by two coupled relaxation processes: relaxation of the chain itself, called sliding dynamics; and relaxation of the environment, called constraint dynamics. The constraint dynamics are implemented by destruction and creation of the entanglements in the middle of the chain in a way statistically self consistent with sliding dynamics. In contrast to previous tube models, Rouse dynamics is completely avoided. The new implementation of constraint dynamics shows good agreement with the algorithm of Doi and Takimoto, which couples the entanglements in a simulation ensemble. However, in this implementation, coupling is avoided. Previous research with tube models showed that constraint dynamics is an important process in prediction of polydisperse and branched chains. However, the implementation of constraint dynamics in tube models is different for linear and branched chains. The slip-link model shows no need for modification of constraint dynamics for bidisperse linear and branched chains. Moreover, our slip-link model requires a single fitting parameter tauK that depends on the temperature of the melt, but not on chain length. The parameter can be fixed from a single fit to linear viscoelastic data. In addition, for branched polymers the branch point movements are determined by the free energy, so that its position is allowed to fluctuation, and even slide through the slip-links. The resulting model exhibits primitive-path fluctuations and chain stretching, so could be applied to flow and generalized to more complicated branches or cross-linked networks without significant modifications.
机译:我们提出了单链平均场模型在纠缠线性混合和星形分支系统中的应用。使用滑环代替管。链条上的纠缠被两个耦合的松弛过程破坏:链条本身的松弛,称为滑动动力学;松弛。环境的放松,称为约束动力学。约束动力学是通过破坏和创建链条中间的纠缠来实现的,其统计方式与滑动动力学具有自洽性。与以前的管模型相比,完全避免了Rouse动力学。约束动力学的新实现与Doi和Takimoto的算法相吻合,该算法将模拟集成中的纠缠耦合在一起。然而,在该实施方式中,避免了耦合。先前对管模型的研究表明,约束动力学是预测多分散和支链的重要过程。但是,对于线性和分支链,管模型中约束动力学的实现是不同的。滑动链接模型表明无需修改双分散线性和支链的约束动力学。此外,我们的滑模模型需要单个拟合参数tauK,该参数取决于熔体的温度,而不取决于链长。可以将参数从单拟合固定为线性粘弹性数据。另外,对于支化聚合物,支化点的运动由自由能决定,因此其位置可以波动,甚至可以通过滑环滑动。生成的模型表现出原始路径波动和链扩展,因此可以应用到流程中,并且可以广泛应用于更复杂的分支或交联网络,而无需进行重大修改。

著录项

  • 作者

    Khaliullin, Renat N.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号