首页> 外文学位 >Gene regulation in Escherichia coli beyond the 'rate' approximation.
【24h】

Gene regulation in Escherichia coli beyond the 'rate' approximation.

机译:大肠杆菌中的基因调控超过“速率”近似值。

获取原文
获取原文并翻译 | 示例

摘要

The blueprint of a living cell is inscribed in its DNA. A region of DNA encoding a protein is called a gene. The cell reads the DNA and makes molecular machines made up of proteins to carry out all cellular functions required for survival. All cells live in ever-changing environments, and have different needs at different times. The control of when and how often each protein is produced from a gene is called gene regulation.;Transcription, the copying of a DNA sequence into a complementary mRNA molecule, is the first step in the information flow from DNA to proteins, and most regulation is already done at the transcription level to avoid the production of superfluous intermediates. A living cell takes environmental stimuli as input, and regulates the activity of genes through DNA-binding proteins called transcription factors.;The activity of a gene is described by its time-series of discrete mRNA production events. The events constituting this transcriptional time-series are stochastic and exhibit intermittent, bursty behavior, in bacteria as well as higher organisms. Thus the transcriptional time-series cannot be fully described by a simple chemical "rate"---the probability per unit time of transcribing an mRNA molecule. An important consequence of this temporal complexity is that gene expression level can be tuned by varying different features of the time-series. It is then natural to ask: What modulation scheme is used by the cell to change expression levels of genes? Furthermore, if we look at the transcriptional time-series of multiple genes, would we see different modulation schemes for different genes, or a common modulation scheme shared by all genes? Last but not least, what is the molecular mechanism leading to bursty transcriptional time-series? What are the biophysical states that correspond to the active and inactive periods in a bursty transcriptional time-series?;To answer these questions, I characterized the mRNA copy-number statistics from multiple promoters in the model organism Escherichia coli under various growth conditions using single-molecule fluorescence in situ hybridization. The kinetics of the underlying transcriptional time-series was then inferred using the two-state model, a simple stochastic mathematical model that describes bursty transcription time-series. I found that the degree of burstiness depends only on the gene expression level, while being independent of the details of gene regulation. The observed behavior is explained by the underlying variation in the duration of bursting events.;At this stage, there is no mechanistic, molecular-level understanding of what gives rise to the bursty behavior of gene activity in bacteria. However, my finding here, that the properties of the transcriptional time-series are gene-independent rather than gene-specific, is contrary to the most common theoretical model used to explain bursty transcriptional time-series in bacteria, which involves the binding and unbinding of transcription factors at the promoter. My data suggests that the observed bursty kinetics arises from gene-nonspecific mechanisms such as DNA topology modulation, RNA polymerase dynamics, or regulation by broad-target DNA-binding proteins. Further investigation would narrow down the source of bursty transcriptional time-series.
机译:活细胞的蓝图铭刻在其DNA中。编码蛋白质的DNA区域称为基因。细胞读取DNA并制造由蛋白质组成的分子机器,以执行生存所需的所有细胞功能。所有单元都生活在不断变化的环境中,并且在不同的时间有不同的需求。控制从基因产生每种蛋白质的时间和频率称为基因调控。转录,即将DNA序列复制到互补的mRNA分子中,是从DNA到蛋白质的信息流的第一步,而大多数调控为了避免产生多余的中间体,已经在转录水平上完成了该操作。活细胞以环境刺激为输入,并通过称为转录因子的DNA结合蛋白调节基因的活性。基因的活性由其离散mRNA生产事件的时间序列来描述。在细菌以及高等生物中,构成该转录时间序列的事件是随机的,并表现出间歇性的突发性行为。因此,转录时间序列不能通过简单的化学“比率”来完全描述-转录mRNA单位时间的概率。这种时间复杂性的重要结果是可以通过改变时间序列的不同特征来调节基因表达水平。然后自然要问:细胞使用什么调节方案来改变基因的表达水平?此外,如果我们查看多个基因的转录时间序列,会看到针对不同基因的不同调制方案,还是所有基因共享的通用调制方案?最后但并非最不重要的一点是,导致突发转录时间序列的分子机制是什么?突发转录时间序列中对应于活跃期和非活跃期的生物物理状态是什么?;为了回答这些问题,我使用单个生物在不同生长条件下表征了模型生物大肠杆菌中多个启动子的mRNA复制数统计-分子荧光原位杂交。然后使用二态模型(描述突发性转录时间序列的简单随机数学模型)推论基础转录时间序列的动力学。我发现突发性程度仅取决于基因表达水平,而与基因调控的细节无关。观察到的行为可以通过爆发事件的持续时间的潜在变化来解释。在此阶段,对于导致细菌基因活性的爆发行为的机理,尚无机制,分子水平的了解。但是,我在这里的发现是转录时间序列的特性与基因无关,而不是基因特异性,这与用来解释细菌中爆发性转录时间序列的最常见理论模型相反,后者涉及结合和解除结合启动子上转录因子的表达。我的数据表明,观察到的爆发动力学是由基因非特异性机制引起的,例如DNA拓扑调控,RNA聚合酶动力学或靶标广泛的DNA结合蛋白的调控。进一步的研究将缩小突发转录时间序列的来源。

著录项

  • 作者

    So, Lok-hang.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Biology Molecular.;Biology Genetics.;Biology Microbiology.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 80 p.
  • 总页数 80
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号