首页> 外文学位 >Accurate image registration through three-dimensional reconstruction.
【24h】

Accurate image registration through three-dimensional reconstruction.

机译:通过三维重建实现精确的图像配准。

获取原文
获取原文并翻译 | 示例

摘要

Image registration is a fundamental problem in image analysis, and is used in a variety of applications such as tracking, moving object detection, remote sensing, etc. In this thesis, we study image registration problems where the images are taken at different times, from different sensors, and from different viewpoints. Moreover, the scene may contain arbitrary 3D structure. With all these variations, image registration become a challenging task, where standard techniques may fail to produce accurate results.;According to the geometry in the image, we categorize image registration problems into 2D registration and 3D registration. In 2D registration, image features are extracted and matched to establish correspondences, from which the epipolar geometry can be estimated. Images are then registered using a derived 2D model. In 3D registration, on top of epipolar geometry estimation, a sparse reconstruction step is required which recovers camera parameters and the sparse structure. A dense reconstruction step follows, which recovers structure in the entire scene, images are then registered through 3D inference. The main contribution in this thesis is the in depth study of a number of issues in image registration applications which a general framework does not address, particularly in the 3D reconstruction pipeline.;We start from 2D image registration, and look at two applications, UAV image registration and retinal image registration. In UAV image registration, we are given a UAV image sequence, and the goal is to produce a mosaic in a progressive manner. As inter-frame registration error accumulates along the process, and results in deviation, we introduce an additional map as a global reference, and perform UAV to map registration to compensate for the error. In retinal image registration, the input is a set of retinal images in multiple modalities. We propose an iterative nearest neighbor matching method to account for issues raised in multi-modal imagery, and achieve both high registration rate and high efficiency.;We then extend our study in both imageries to 3D, to account for the underlying 3D geometry. In addition, we research some other 3D reconstruction problems using human facial images. In 3D retinal image registration, we address the issues which arise from the near planar property of a retinal surface, and propose a 4-pass bundle adjustment method to account for it. Our approach is shown to be very robust and efficient, and is state-of-the-art in 3D retinal image registration. For UAV image registration, we focus on the dense 3D reconstruction of urban environments. Images of urban environments are characterized by significant occlusions, sharp edges, and textureless regions, leading to poor 3D reconstruction using standard multi-view stereo algorithms. Our approach makes a general assumption that urban scenes consist of planar facets that are either horizontal or vertical. These two assumptions provide very strong constraints for the underlying geometry. The contribution of this work is the way we translate these constraints respectively into intra-image-column and inter-image-column constraints, and formulate the dense reconstruction problem as a 2-pass dynamic programming problem, which can be solved efficiently. Moreover, our algorithm is fully parallelizable, which is appropriate for GPU computing. Our results show that we can preserve a high level of detail, and have high visual quality. In 3D human face reconstruction, we are given a set of 5 wide-baseline images that are only weakly calibrated. The focus in this work is on both sparse reconstruction and dense reconstruction. First, to calibrate cameras, we propose an iterative bundle adjustment approach to solve the challenging wide-baseline feature matching problem. Then, for dense reconstruction, we propose to use a face-specific cylindrical representation which allows us to solve a global optimization problem for N-view dense aggregation. We explicitly use profile contours extracted from the image in both sparse reconstruction and dense reconstruction steps to provide strong constraints for the underlying geometry. Experimental results show that our method provides accurate and stable reconstruction results on wide-baseline images. We compare our method with state-of-the-art methods, and show that it provides significantly better results in terms of both accuracy and efficiency.
机译:图像配准是图像分析中的一个基本问题,并且被用于各种应用中,例如跟踪,运动物体检测,遥感等。在本文中,我们研究了在不同时间拍摄图像的图像配准问题。不同的传感器,从不同的角度来看。此外,场景可以包含任意3D结构。在所有这些变化中,图像配准成为一项具有挑战性的任务,其中标准技术可能无法产生准确的结果。;根据图像中的几何形状,我们将图像配准问题分为2D配准和3D配准。在2D配准中,图像特征被提取并匹配以建立对应关系,由此可以估计对极几何形状。然后使用派生的2D模型注册图像。在3D配准中,除了对极几何估计之外,还需要执行稀疏重建步骤,以恢复相机参数和稀疏结构。随后执行密集的重建步骤,该步骤将恢复整个场景中的结构,然后通过3D推理对图像进行配准。本文的主要贡献是对图像配准应用程序中许多问题的深入研究,这些问题是通用框架无法解决的,特别是在3D重建管道中。;我们从2D图像配准开始,并研究了两个应用程序:UAV图像配准和视网膜图像配准。在无人机图像配准中,我们获得了无人机图像序列,目标是逐步生成马赛克。随着帧间配准误差在此过程中累积并导致偏差,我们引入了额外的地图作为全局参考,并执行UAV进行地图配准以补偿误差。在视网膜图像配准中,输入是一组具有多种形式的视网膜图像。我们提出了一种迭代的最近邻匹配方法,以解决多模式图像中提出的问题,并实现高配准率和高效率。;然后,我们将两种图像的研究扩展到3D,以解决潜在的3D几何问题。此外,我们使用人脸图像研究了其他3D重建问题。在3D视网膜图像配准中,我们解决了由视网膜表面的近平面特性引起的问题,并提出了一种4遍束调整方法来解决这一问题。我们的方法被证明是非常健壮和高效的,并且是3D视网膜图像配准中的最新技术。对于无人机图像配准,我们专注于城市环境的密集3D重建。城市环境的图像具有明显的遮挡,锐利的边缘和无纹理的区域的特征,从而导致使用标准多视图立体算法的3D重建效果不佳。我们的方法大致假设城市场景由水平或垂直的平面组成。这两个假设为基础几何提供了非常强的约束。这项工作的贡献在于我们将这些约束分别转换为图像内和图像间约束,并将密集重构问题表述为2遍动态规划问题,可以有效地解决该问题。此外,我们的算法是完全可并行化的,适用于GPU计算。我们的结果表明,我们可以保留较高的细节水平,并具有较高的视觉质量。在3D人脸重建中,我们得到了一组5个仅弱校准的宽基线图像。这项工作的重点是稀疏重建和密集重建。首先,为了校准相机,我们提出了一种迭代束调整方法,以解决具有挑战性的宽基线特征匹配问题。然后,对于密集重建,我们建议使用特定于脸部的圆柱表示,这使我们能够解决N视图密集聚合的全局优化问题。我们在稀疏重建和密集重建步骤中明确地使用从图像中提取的轮廓轮廓,为基础几何结构提供了强大的约束。实验结果表明,该方法可以在宽基线图像上提供准确,稳定的重建结果。我们将我们的方法与最先进的方法进行了比较,结果表明,就准确性和效率而言,它提供了明显更好的结果。

著录项

  • 作者

    Lin, Yuping.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号