首页> 外文学位 >Adjoint-Gradient-Based production optimization with the augmented Lagragian method.
【24h】

Adjoint-Gradient-Based production optimization with the augmented Lagragian method.

机译:基于扩展拉格朗日法的基于伴随梯度的生产优化。

获取原文
获取原文并翻译 | 示例

摘要

The production optimization step of the "closed-loop" reservoir management is an optimal well control problem determining optimal operating conditions to maximize hydrocarbon extraction or net present value (NPV) for the remaining expected life of a reservoir. The most challenging part of production optimization is to honor the nonlinear constraints or state-control constraints, such as WOR, GOR and production rates. In this research, we implemented an augmented Lagrangian method for solving the production optimization problem under linear and nonlinear constraints. In our implementation, the objective function to be maximized is defined as the augmented Lagrangian function consisting of the NPV and all constraints except the bound constraints. At each iteration of the optimization procedure, the objective function is approximated by a quadratic model based on the adjoint gradient and the approximate Hessian matrix obtained using a quasi-Newton method. The quadratic model is then maximized subject to the bound constraints using a gradient-projection trust-region method. This step ensures all the bound constraints are satisfied. Once the controls that maximize the quadratic function are obtained at this iteration, we update the Lagrange multipliers or penalty parameter depending on how well the constraints are satisfied, and move to the next iteration. The above process is repeated until convergence. The advantage of the above procedure is that the bound constraints are easily handled using the gradient-projection method for a quadratic approximation of the objective function. Compared to the generalized reduced gradient (GRG) method which is implemented in Eclipse 300, our method does not require the controls to be feasible at every iteration, but the constraints are satisfied within a reasonable tolerance at convergence.;We extend the augmented Lagrangian method to solve the robust production optimization problem. The technique is applied to synthetic reservoir problems to demonstrate its efficiency and robustness. When reservoir description is uncertain, experiments show that the optimal NPV obtained based on a single reservoir model may not be the optimal NPV for the true geology, whereas the application of robust optimization significantly reduces this risk. Another challenging problem for production optimization is to solve multi-objective optimization problems, such as long-term and short-term optimization. Robust long-term optimization maximizes the expected life-cycle net-present value (NPV) over a set of geological models, which represent the uncertainty of reservoir description. As the life-cycle optimal controls may be in conflict with the operator's objective of maximizing short-time production, the method is adapted to maximize the expectation of short-term NPV over the next one or two years subject to the constraint that the life-cycle NPV will not be substantially decreased. Experimental results also show robust sequential optimization on each short-term period is not able to achieve an expected life-cycle NPV as high as the one obtained with robust long-term optimization.
机译:“闭环”储层管理的生产优化步骤是一个最优的井控问题,它确定了最佳的运行条件,以在剩余的预期寿命内最大化碳氢化合物的提取量或净现值(NPV)。生产优化中最具挑战性的部分是遵守非线性约束或状态控制约束,例如WOR,GOR和生产率。在这项研究中,我们实施了一种增强的拉格朗日方法来解决线性和非线性约束下的生产优化问题。在我们的实现中,要最大化的目标函数定义为由NPV和除约束之外的所有约束组成的增强拉格朗日函数。在优化过程的每次迭代中,基于伴随梯度和使用拟牛顿法获得的近似Hessian矩阵,通过二次模型对目标函数进行近似。然后使用梯度投影信任区域方法在约束约束条件下最大化二次模型。此步骤确保满足所有约束条件。在此迭代中获得最大化二次函数的控件后,我们将根据满足约束的程度更新Lagrange乘数或惩罚参数,然后移至下一个迭代。重复上述过程直到收敛。上述过程的优点是,对于目标函数的二次逼近,可以使用梯度投影方法轻松处理边界约束。与在Eclipse 300中实现的广义缩减梯度(GRG)方法相比,我们的方法不需要每次迭代都可行的控件,但是在收敛的合理公差内满足了约束条件。;我们扩展了增强拉格朗日方法解决强大的生产优化问题。该技术被应用于合成油藏问题,以证明其有效性和鲁棒性。当储层描述不确定时,实验表明,基于单个储层模型获得的最优NPV可能不是真实地质情况下的最优NPV,而稳健优化的应用显着降低了这种风险。生产优化的另一个挑战性问题是解决多目标优化问题,例如长期和短期优化。稳健的长期优化可以在一组地质模型上最大化预期的生命周期净现值(NPV),这代表了储层描述的不确定性。由于生命周期的最佳控制可能会与运营商实现短期生产最大化的目标相抵触,因此该方法适用于在未来一两年内最大限度地提高对短期NPV的预期,但要遵循以下条件:周期净现值不会大幅降低。实验结果还表明,在每个短期周期上进行鲁棒的顺序优化都无法获得与通过鲁棒的长期优化获得的预期寿命周期NPV一样高的预期生命周期NPV。

著录项

  • 作者

    Chen, Chaohui.;

  • 作者单位

    The University of Tulsa.;

  • 授予单位 The University of Tulsa.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号