首页> 外文学位 >Scalable Optical MEMS Technology for Quantum Information Processing.
【24h】

Scalable Optical MEMS Technology for Quantum Information Processing.

机译:用于量子信息处理的可扩展光学MEMS技术。

获取原文
获取原文并翻译 | 示例

摘要

Among the various physical systems considered for scalable quantum information processing (QIP), individually trapped ions or neutral atoms have emerged as promising candidates. Recent experiments using these systems have demonstrated the basic building blocks required for a useful quantum computer. In many of these experiments, precisely tuned lasers control and manipulate the quantum bit (qubit) represented in the electronic energy levels of the ion or atom. Scaling these systems to the necessary number of qubits needed for meaningful calculations, requires the development of scalable optical technology capable of delivering laser resources across an array of ions or atoms. That scalable technology is not currently available.;In this dissertation, I will report on the development, design, characterization, and implementation of an optical beam steering system utilizing microelectro-mechanical systems (MEMS) technology. Highly optimized micromirrors enable fast reconfiguration of multiple laser beam paths which can accommodate a range of wavelengths. Employing micromirrors with a broadband metallic coating, our system has the flexibility to simultaneously control multiple beams covering a wide range of wavelengths.;The reconfiguration of two independent beams at different wavelengths (780 and 635 nm) across a common 5x5 array of target sites is reported along with micromirror switching times as fast as 4 mus. The optical design of the system minimizes residual intensity at neighboring sites to less than 40 dB below the peak intensity. Integration of a similar system into a neutral atom QIP experiment is reported where 5 individually trapped atoms are selectively manipulated through single qubit rotations with a single laser source. This demonstration represents the first application of MEMS technology in scalable QIP laser addressing.
机译:在考虑用于可伸缩量子信息处理(QIP)的各种物理系统中,被单独捕获的离子或中性原子已成为有希望的候选者。使用这些系统的最新实验已经证明了有用的量子计算机所需的基本构建块。在许多这样的实验中,精确调谐的激光器控制和操纵以离子或原子的电子能级表示的量子位(qubit)。将这些系统缩放到有意义的计算所需的必要数量的qubit,需要开发可扩展的光学技术,该技术能够跨离子或原子阵列传递激光资源。该可扩展技术目前尚不可用。在本文中,我将报告利用微机电系统(MEMS)技术的光束转向系统的开发,设计,表征和实现。高度优化的微镜可以快速重新配置可以适应一定波长范围的多个激光束路径。我们的系统采用具有宽带金属涂层的微镜,可以灵活地同时控制覆盖宽范围波长的多束光束。在一个常见的5x5目标点阵列上,两个不同波长(780和635 nm)的独立光束的重新配置是:与微镜切换时间一样快的报告也高达4微米。该系统的光学设计将相邻位置的残留强度降至最低,低于峰值强度不到40 dB。据报道,将类似的系统集成到中性原子QIP实验中,其中使用单个激光源通过单个量子位旋转有选择地操纵5个被单独捕获的原子。该演示代表了MEMS技术在可伸缩QIP激光寻址中的首次应用。

著录项

  • 作者

    Knoernschild, Caleb.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号