首页> 外文学位 >Probing the Mechanism of Correction in DeltaF508-CFTR.
【24h】

Probing the Mechanism of Correction in DeltaF508-CFTR.

机译:探索DeltaF508-CFTR中的校正机制。

获取原文
获取原文并翻译 | 示例

摘要

Cystic Fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which cause loss function of the CFTR channel on the apical surface of epithelial cells. ΔF508-CFTR, the major mutation in patients, is misfolded, retained in the endoplasmic reticulum (ER) and degraded. Small molecule corrector compounds partially rescue the trafficking defect of ΔF508-CFTR by allowing escape from the ER and trafficking to the plasma membrane where it exhibits partial function. These compounds may bind directly to the mutant protein and rescue the biosynthetic defect by inducing improved protein conformation. We tested this hypothesis by evaluating the consequence of corrector compound on the conformation of each nucleotide-binding domain (NBD) in the context of the full-length mutant protein in limited proteolytic digest studies. We found that VRT-325 was capable in partially restoring compactness only in NBD1. In comparison, ablation of the arginine framed peptide sequence: R553XR555 (ΔF508-KXK-CFTR) modified the protease resistance of NBD1, NBD2 and the full-length protein. Singly, each intervention led to a partial correction of the processing defect. Together these interventions restored processing of ΔF508-CFTR to near wild-type levels. Importantly however, a defect in NBD1 conformation persisted, as did a defect in channel activation after the combined interventions. This defect in channel activation can be fully corrected by addition of the potentiator: VX-770. The experiments performed partly elucidated the molecular mechanism of action for drug therapy and suppressor mutation. It is important to understand these basic concepts in hopes to layout a blue print for future drug design.
机译:囊性纤维化(CF)是由囊性纤维化跨膜电导调节剂(CFTR)基因突变引起的,该突变导致CFTR通道在上皮细胞顶表面的功能丧失。患者的主要突变体ΔF508-CFTR被错误折叠,保留在内质网(ER)中并降解。小分子校正剂化合物通过允许从ER逃逸并转运到质膜发挥部分功能,从而部分挽救了ΔF508-CFTR的转运缺陷。这些化合物可以直接结合突变蛋白,并通过诱导改善的蛋白构象来挽救生物合成缺陷。我们通过在有限的蛋白水解消化研究中,在全长突变蛋白的背景下评估校正剂化合物对每个核苷酸结合结构域(NBD)构象的影响,从而验证了这一假设。我们发现VRT-325仅在NBD1中能够部分恢复紧凑性。相比之下,精氨酸框架肽序列:R553XR555(ΔF508-KXK-CFTR)的切除修饰了NBD1,NBD2和全长蛋白的蛋白酶抗性。单独地,每种干预导致了加工缺陷的部分校正。这些干预措施共同将ΔF508-CFTR的加工恢复到接近野生型水平。然而,重要的是,在联合干预后,NBD1构象的缺陷仍然存在,通道激活的缺陷也同样存在。可以通过添加增强器VX-770完全纠正通道激活中的此缺陷。进行的实验部分阐明了药物治疗和抑制基因突变的分子机制。重要的是要理解这些基本概念,以期为将来的药物设计奠定蓝图。

著录项

  • 作者

    Yu, Wilson.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Health Sciences Pharmacology.;Biology Physiology.;Chemistry Biochemistry.
  • 学位 M.Sc.
  • 年度 2011
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号