首页> 外文学位 >On kinetic dissipation in collisionless turbulent plasmas.
【24h】

On kinetic dissipation in collisionless turbulent plasmas.

机译:关于无碰撞湍流等离子体中的动力学耗散。

获取原文
获取原文并翻译 | 示例

摘要

Plasma turbulence is a phenomenon that is present in astrophysical as well as terrestrial plasmas. The earth is embedded in a turbulent plasma, emitting from the sun, called the solar wind. It is important to understand the nature of this plasma in order to understand space weather. A critical unsolved problem is that of the source of dissipation in turbulent plasmas. It is believed to play a central role in the heating of the solar corona which in turn drives the solar wind. The solar wind itself is observed to be highly turbulent and hotter than predicted through adiabatic expansion models. Turbulence and its associated dissipation have been studied extensively through the use of MHD models. However, the solar wind and large regions of the solar corona have very low collisionality, which calls into question the use of simple viscosity and resistivity in most MHD models. A kinetic treatment is needed for a better understanding of turbulent dissipation. This thesis studies the dissipation of collisionless turbulence using direct numerical hybrid simulations of turbulent plasmas. Hybrid simulations use kinetic ions and fluid electrons. Having full kinetic ion physics, the dissipation in these simulations at the ion scales is self consistent and requires no assumptions. We study decaying as well as quasi steady state systems (driven magnetically). Initial studies of the Orszag-Tang vortex [Orszag, JFM, 1979] (which is an initial condition that quickly generates decaying strong turbulence) showed preferential perpendicular heating of protons (with T_perp /T_|| > 1). An energy budget analysis showed that in the turbulent regime, almost all the dissipation occurs through magnetic interactions. We study the energy budget of waves using the k - o spectra (energy in the wavenumber-frequency space). The k - o spectra of this study and subsequent studies of driven turbulent plasmas do not show any significant power in the linear wave modes of the system. This suggests that in the strong 2D limit, contrary to the conventional belief, waves do not appear to play an important role in the heating of plasma. We also study the onset of turbulence and heating of plasma as a function of the driving frequency. We find that the onset of turbulence has a critical dependence on the relative size of the driving time scales and the nonlinear time scales of the system. The driving time scale has to be longer than the nonlinear time of the system or the intrinsic nonlinear time associated with the driving function. For smaller driving time scales (or higher driving frequencies) we do not generate turbulence and do not heat the plasma. This setup has a resemblance to the generation of turbulence and heating of the plasma in the solar corona. The driving frequency corresponds to the frequency of driving because of the foot point motions of the field lines. Our results are consistent with Parker's picture for heating the corona (e.g. Parker, Planets Earth and Space, 2001). The time scale of the foot points has to be longer than the nonlinear time of the system in order to generate turbulence and heat the corona.
机译:血浆湍流是天体和地面血浆中都存在的现象。地球嵌入湍流的等离子体中,该等离子体从太阳发出,称为太阳风。重要的是要了解这种等离子体的性质,以便了解太空天气。关键的未解决问题是湍流等离子体中的耗散源。据信在电晕的加热中起着中心作用,而电晕又驱动了太阳风。观测到的太阳风本身比湍流和绝热膨胀模型预测的要高得多。湍流及其相关的耗散已经通过使用MHD模型进行了广泛的研究。但是,太阳风和太阳日冕的大区域具有极低的碰撞性,这使大多数MHD模型中使用简单的粘度和电阻率成为问题。为了更好地了解湍流耗散,需要进行动力学处理。本文利用湍流等离子体的直接数值混合模拟研究了无碰撞湍流的耗散。混合模拟使用动力学离子和流体电子。具有完整的动力学离子物理原理,这些模拟中的离子级耗散是自洽的,不需要任何假设。我们研究衰变以及准稳态系统(磁驱动)。对Orszag-Tang涡旋的初步研究[Orszag,JFM,1979](这是一个迅速产生衰减的强湍流的初始条件),显示了质子的优先垂直加热(T_perp / T_ ||> 1)。能量预算分析表明,在湍流状态下,几乎所有耗散都是通过磁相互作用发生的。我们使用k-o谱(波数-频率空间中的能量)研究波的能量收支。这项研究和随后研究的驱动湍流等离子体的k-o光谱在系统的线性波模中没有显示出任何显着的功率。这表明,在2D严格的限制下,与传统观点相反,波似乎并未在等离子体的加热中起重要作用。我们还研究了湍流和等离子体加热与驱动频率的关系。我们发现,湍流的发生与驾驶时间尺度的相对大小和系统的非线性时间尺度有着至关重要的关系。驾驶时间标度必须长于系统的非线性时间或与驾驶功能相关的固有非线性时间。对于较小的驱动时间尺度(或较高的驱动频率),我们不会产生湍流,也不会加热等离子体。这种设置类似于太阳电晕中湍流的产生和等离子体的加热。由于场线的脚点运动,驱动频率对应于驱动频率。我们的结果与Parker加热电晕的照片相吻合(例如Parker,Planets Earth and Space,2001)。脚点的时间标度必须比系统的非线性时间更长,以便产生湍流并加热电晕。

著录项

  • 作者

    Parashar, Tulasi Nandan.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Physics Theory.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号