首页> 外文学位 >Investigation of the Maturation of Yeast Superoxide Dismutase: Effect of the Copper Chaperone, the Disulfide Bond, and Metal Binding.
【24h】

Investigation of the Maturation of Yeast Superoxide Dismutase: Effect of the Copper Chaperone, the Disulfide Bond, and Metal Binding.

机译:酵母超氧化物歧化酶成熟的研究:铜伴侣,二硫键和金属结合的影响。

获取原文
获取原文并翻译 | 示例

摘要

Superoxide is formed by the one electron reduction of dioxygen. Superoxide damages cells directly, and further reduction of superoxide produces other reactive molecules that can damage cells. Superoxide dismutase enzymes defend against superoxide by catalyzing the disproportionation of two superoxide molecules to hydrogen peroxide and dioxygen.;In this dissertation, copper-zinc superoxide dismutase (Sod1) is examined. By various measurements of Sod1 activity we found Sod1 from the budding yeast Saccharomyces cerevisiae is active, obtains metal in vivo , and has in oxidized disulfide bond, all in the absence of the copper chaperone for Sod1 (CCS). We also found yeast Sod1 is active in the absence of the intrasubunit disulfide bond in Sod1, but activity is lower than wild type Sod1, possibly due to lower ionic attraction for superoxide. The findings of activity without CCS and activity in the absence of the disulfide bond both contradicted earlier work.;We also explored metal binding to yeast and tomato Sod1. We found that metal binding to the zinc site of yeast Sod1 at pH 5.5 is impaired in the absence of the disulfide bond, but the addition of copper or an increase in pH restores binding at the zinc site. We found tomato Sod1 does not bind metals below pH 5.0, corroborating the finding of our collaborator who showed an impaired zinc binding site in a crystal structure at pH 4.6.;Finally, we designed and synthesized, up to the final step, a molecular wire for insertion into the active site of Sod1. The wire is to be used to connect Sod1 to an electrode for determination of the reduction potential of the copper in Sod1.
机译:超氧是通过双氧的一个电子还原而形成的。超氧化物直接损害细胞,超氧化物的进一步还原会产生其他可损害细胞的反应性分子。超氧化物歧化酶通过催化两个超氧化物分子歧化为过氧化氢和双氧而防御超氧化物。本文研究了铜锌超氧化物歧化酶(Sod1)。通过对Sod1活性的各种测量,我们发现,在没有Sod1铜伴侣(CCS)的情况下,来自发芽酵母啤酒酵母(Saccharomyces cerevisiae)的Sod1具有活性,在体内获得金属并具有氧化的二硫键。我们还发现酵母Sod1在Sod1中不存在亚基内二硫键的情况下具有活性,但活性低于野生型Sod1,这可能是由于对超氧化物的离子吸引力较低。没有CCS的活性和没有二硫键的活性的发现都与早期的工作相矛盾。;我们还研究了金属与酵母和番茄Sod1的结合。我们发现,在不存在二硫键的情况下,金属与酵母Sod1的锌位点的金属结合作用会受到损害,但是在不存在二硫键的情况下,铜的加入或pH值的增加会恢复锌位点的结合。我们发现番茄Sod1在pH低于5.0时不与金属结合,这证实了我们的合作者的发现,该合作伙伴在pH 4.6的晶体结构中显示出锌结合位点受损;最后,我们设计并合成了分子链,直到最后一步用于插入Sod1的活性位点。该导线将用于将Sod1连接到电极,以确定Sod1中铜的还原电位。

著录项

  • 作者

    Sea, Kevin William.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Molecular.;Biology Microbiology.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号