首页> 外文学位 >A Quantized Crystal Plasticity Model for Nanocrystalline Metals: Connecting Atomistic Simulations and Physical Experiments.
【24h】

A Quantized Crystal Plasticity Model for Nanocrystalline Metals: Connecting Atomistic Simulations and Physical Experiments.

机译:纳米晶体金属的定量晶体可塑性模型:连接原子模拟和物理实验。

获取原文
获取原文并翻译 | 示例

摘要

Nanocrystalline (NC) metals, which consist of grains or crystallites with sizes less than 100 nm, have exhibited unique mechanical and physical properties, in comparison to coarse-grained (CG) counterparts. The appealing mechanical properties, for instance, include extremely high strengths, very extended elastic-plastic transitions, and unprecedented magnitudes of recoverable plastic strain. Further, footprints of intergranular stresses measured from diffraction experiments are distinct for NC metals vs. CG metals. In particular, recent in-situ synchrotron measurements reveal that residual lattice strains change rather modestly even after imposing macro plastic strains to ∼1%. Remarkably, over the same regime, the corresponding residual peak widths decrease. These phenomena are in sharp contrast to CG metals, for which residual lattice strain and peak widths both increase with deformation.;In this dissertation, a quantized crystal plasticity (QCP) model is developed to explore the aforementioned unique NC features. The QCP model employs a crystallographic description of dislocation slip plasticity; in particular, single slip events across nano scale grains impart large (∼1%) increments in grain-averaged plastic shear. Therefore, plasticity does not proceed in a smooth, continuous fashion but rather via strain jumps, imparting violent grain-to-grain redistribution in stress. This discrete feature is consistent with recent Molecular Dynamics (MD) simulations, which illustrate a dramatic jump in grain-averaged shear strain when a dislocation spontaneously transverses a nano grain interior after depinning from grain boundary (GB) ledges. Finite element simulations implementing this quantized plasticity approach predict the experimental properties of enhanced strength, extended elastic-plastic strain, and recoverable plastic strain, as well as the trends in residual lattice strain and peak width mentioned, but only under certain conditions. First, the grain-to-grain distribution of critical stress for slip activation is very different from that for CG materials. In particular, no events occur below a rather large threshold stress ∼ 1/grain size; and above this threshold, a very asymmetric distribution predominates, signifying that a relatively large number of easier-to-slip grains are balanced by a minority of harder-to-slip grains. Second, there exists a large residual stress state, which can be removed via post deformation.;The quantized crystal plasticity provides an alternate view of NC deformation, compared to hypotheses in the literatures that are centered on GB sliding or deformation of a GB phase separated from grain interior. The QCP model is capable of bridging the disparity in length and time scales between MD simulations and physical experiments, and as well establishes an insightful connection between them.
机译:与晶粒(晶粒细化)对应物相比,由晶粒或晶粒尺寸小于100 nm的纳米晶(NC)金属表现出独特的机械和物理性能。例如,吸引人的机械性能包括极高的强度,非常长的弹塑性转变以及可恢复的塑性应变前所未有的幅度。此外,从衍射实验测得的晶间应力足迹对于NC金属和CG金属而言是不同的。特别是,最近的原位同步加速器测量表明,即使在施加约1%的宏观塑性应变后,残余晶格应变也会相当适度地变化。显着地,在相同状态下,相应的残留峰宽减小。这些现象与CG金属形成了鲜明的对比,而CG金属的残余晶格应变和峰宽均随变形而增加。本论文建立了定量晶体可塑性(QCP)模型,以探索上述独特的NC特征。 QCP模型采用位错滑移可塑性的晶体学描述。特别是,跨纳米级晶粒的单次滑移会在晶粒平均塑性剪切力中产生较大的增量(〜1%)。因此,可塑性不是以平滑,连续的方式进行,而是通过应变跳跃来进行,从而在应力中产生剧烈的晶粒间重新分布。这种离散的特征与最近的分子动力学(MD)模拟相一致,该模拟表明,当位错从晶界(GB)壁架上脱钉后,位错自发地横切纳米晶粒内部时,晶粒平均剪切应变会急剧上升。实施此量化可塑性方法的有限元模拟预测了增强强度,扩展的弹塑性应变和可恢复的塑性应变以及提到的残余晶格应变和峰宽趋势的实验特性,但仅在某些条件下才可以。首先,滑移激活的临界应力在晶粒间的分布与CG材料有很大不同。特别是,在相当大的阈值应力〜1 /晶粒大小以下,不会发生任何事件。在此阈值之上,非常不对称的分布占主导地位,这表明相对较多的易滑晶粒被少数难滑晶粒所平衡。其次,存在较大的残余应力状态,可以通过后期变形消除。;与文献中的假设以GB滑动或GB相分离的变形为中心相比,量化的晶体可塑性提供了NC变形的另一种观点。从谷物内部。 QCP模型能够弥合MD模拟和物理实验之间在长度和时间尺度上的差异,并在两者之间建立有深刻见解的联系。

著录项

  • 作者

    Li, Lin.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号