首页> 外文学位 >Range finding in passive wireless sensor networks using power-optimized waveforms.
【24h】

Range finding in passive wireless sensor networks using power-optimized waveforms.

机译:使用功率优化波形在无源无线传感器网络中进行测距。

获取原文
获取原文并翻译 | 示例

摘要

Passive wireless sensor networks (WSNs) are quickly becoming popular for many applications such as article tracking, position location, temperature sensing, and passive data storage. Passive tags and sensors are unique in that they collect their electrical energy by harvesting it from the ambient environment. Tags with charge pumps collect their energy from the signal they receive from the transmitting source. The efficiency of converting the received signal to DC power is greatly enhanced using a power-optimized waveform (POW). Measurements in the first part of this dissertation show that a POW can provide efficiency gains of up to 12 dB compared to a sine-wave input.;Tracking the real-time location of these passive tags is a specialized feature used in some applications such as animal tracking. A passive WSN that uses POWs for the improvement of energy-harvesting may also estimate the range to a tag by measuring the time delay of propagation from the transmitter to the tag and back to the transmitter. The maximum-likelihood (ML) estimator is used for estimating this time delay, which simplifies to taking the cross-correlation of the received signal with the transmitted signal.;This research characterizes key aspects of performing range estimations in passive WSNs using POWs. The shape of the POW has a directly-measurable effect on ranging performance. Measurements and simulations show that the RMS bandwidth of the waveform has an inversely proportional relationship to the uncertainty of a range measurement. The clutter of an environment greatly affects the uncertainty and bias exhibited by a range estimator. Random frequency-selective environments with heavy clutter are shown to produce estimation uncertainties more than 20 dB higher than the theoretical lower bound. Estimation in random frequency-flat environments is well-behaved and fits the theory quite nicely. Nonlinear circuits such as the charge pump distort the POW during reflection, which biases the range estimations. This research derives an empirical model for predicting the estimation bias for Dickson charge pumps and verifies it with simulations and measurements.
机译:无源无线传感器网络(WSN)在许多应用中迅速流行,例如物品跟踪,位置定位,温度感应和无源数据存储。无源标签和传感器的独特之处在于,它们通过从周围环境中收集电能来收集电能。带有电荷泵的标签从它们从发射源接收的信号中收集能量。使用功率优化波形(POW),可以大大提高将接收信号转换为直流功率的效率。本文第一部分的测量表明,与正弦波输入相比,POW可以提供高达12 dB的效率增益。跟踪这些无源标签的实时位置是某些应用中的一项特殊功能,例如动物追踪。使用POW来改善能量收集的无源WSN也可以通过测量从发射机到标签再到发射机的传播的时间延迟来估计到标签的范围。最大似然(ML)估计器用于估计此时间延迟,这简化了接收信号与发射信号之间的互相关性。本研究描述了使用POW在无源WSN中进行距离估计的关键方面。 POW的形状对测距性能有直接的影响。测量和仿真表明,波形的RMS带宽与范围测量的不确定性成反比关系。环境的混乱会极大地影响范围估算器的不确定性和偏差。随机杂波频率选择环境杂乱无章,显示出比理论下限高出20 dB以上的估计不确定性。随机频率平坦环境中的估计行为良好,非常符合该理论。诸如电荷泵之类的非线性电路会在反射过程中使POW失真,这会使范围估计产生偏差。这项研究得出了一个经验模型,用于预测Dickson电荷泵的估计偏差,并通过仿真和测量对其进行验证。

著录项

  • 作者

    Trotter, Matthew S.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号