首页> 外文学位 >Physical Oceanographic Controls on Biological Production and Ocean-Atmosphere Carbon Flux in the North Pacific.
【24h】

Physical Oceanographic Controls on Biological Production and Ocean-Atmosphere Carbon Flux in the North Pacific.

机译:北太平洋生物生产和海洋大气碳通量的物理海洋学控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation identifies and quantifies the impact of processes driving two biogeochemical phenomena of interest by considering them in the context of the large-scale circulation in which they occur. Both processes occur in the North Pacific transition zone (NPTZ), a basin-wide region near the subpolar-subtropical gyre boundary.;First, this work investigates the physical forcing behind the large seasonal variability in the location of the Transition zone chlorophyll front (TZCF). The TZCF is a persistent gradient in sea surface color that separates high chlorophyll waters to the north from low chlorophyll waters to the south. The chlorophyll front shifts seasonally by about 1000 km, oscillating between its southernmost winter latitude and its northernmost summer latitude. The forcing behind this seasonal signal is of interest because a number of migratory marine animals, both commercial and endangered, appear to track it.;This first study finds that vertical processes, traditionally viewed as controlling the dynamical supply of nutrients to surface waters, are insufficient to explain seasonal variations in nutrient supply to the transition zone. Instead, the wind-driven horizontal Ekman transport of nutrients, moving southward from the subpolar gyre into the northern reaches of the subtropical gyre, drives the southward migration of the TZCF. Such lateral transport of nitrate supports up to 40% of new primary productivity in the region annually, and nearly all of new primary productivity in the winter.;Second, this work investigates why the North Pacific transition zone waters are a notably strong sink for atmospheric carbon dioxide (CO2 ) on a mean annual basis, while seasonally they vary from a sink in the winter to a neutral to weak source in the summer. As the partial pressure of carbon dioxide (pCO2) in the surface mixed layer exerts primary control on the direction and magnitude of air-sea carbon exchange, this study quantifies the impact of processes regulating seawater pCO2: temperature, salinity, advection of dissolved inorganic carbon (DIC) and alkalinity (ALK), mixing of DIC and ALK, biology, and air-sea carbon flux.;Seasonal controls on pCO2 in the North Pacific transition zone differ from annual controls. Temperature effects dominate the seasonal signal, but are partially countered throughout the year by opposing processes. In spring and summer, biological drawdown partially offsets the increase in pCO2 due to warming waters; in fall and winter, the vertical entrainment of carbon moderates the decrease in pCO2 due to cooling waters. On a mean annual basis, air-sea carbon flux, biology, mixing, and advection all have a net impact on seawater pCO2. Though important seasonally, temperature has a small impact on pCO2 and air-sea carbon flux annually, accounting for only about 15-20% of oceanic carbon uptake through temperature-driven solubility changes.;This second study again finds an important role for lateral processes to play in regulating biogeochemical phenomena in the North Pacific transition zone. The ability of the region to uptake atmospheric carbon year after year is maintained by those processes exporting carbon from its surface waters: the vertical export of organic carbon to depth, and the lateral geostrophic advection of carbon out of the region. This lateral advection alone determines the location of the sink region: of the processes impacting seawater pCO 2 on a mean annual basis, only the geostrophic divergence of DIC disproportionately lowers pCO2 in the transition zone latitudes, supporting greater atmospheric CO2 uptake here than in surrounding regions.;This dissertation identifies and quantifies processes driving biogeochemical features in the North Pacific transition zone, finding the large-scale circulation in the region plays a significant role in regulating these processes. The unique physical oceanographic characteristics of the NPTZ, and in particular the lateral transport, support biological and chemical attributes notably distinct from adjacent waters.
机译:本文通过在发生大规模生物循环的背景下对它们进行研究,从而确定和量化了引起人们关注的两种生物地球化学现象的过程所产生的影响。这两个过程都发生在北太平洋过渡带(NPTZ),该区域是亚极-亚热带回旋边界附近的盆地范围区域;首先,这项研究调查了过渡带叶绿素前缘位置大的季节变化背后的物理强迫( TZCF)。 TZCF是海面颜色的持续梯度,它将北部的高叶绿素水与南部的低叶绿素水分隔开。叶绿素前缘季节性移动约1000公里,在最南端的冬季纬度和最北端的夏季纬度之间振荡。这种季节性信号背后的强迫是令人感兴趣的,因为许多商业和濒临灭绝的迁徙海洋动物似乎都在追踪它。这项第一项研究发现,传统上被视为控制营养向地表水中动态供应的垂直过程是不足以解释过渡区养分供应的季节性变化。取而代之的是,由风驱动的水平Ekman养分运输,从次极回旋带向南移动到亚热带回旋带的北部,驱使TZCF向南迁移。硝酸盐的这种侧向运输每年支持该地区新生产力的高达40%,而冬季则几乎支持所有新生产力。第二,这项工作研究了北太平洋过渡区水域为何是大气中特别强大的汇二氧化碳(CO2)的平均值为每年,而季节性则从冬天的汇减少到夏天的中性到弱源。由于表面混合层中二氧化碳的分压(pCO2)对海气碳交换的方向和幅度具有主要控制作用,因此本研究量化了调节海水pCO2的过程的影响:温度,盐度,溶解性无机碳的平流(DIC)和碱度(ALK),DIC和ALK的混合,生物学以及海海碳通量。;北太平洋过渡区pCO2的季节控制不同于年度控制。温度效应在季节性信号中占主导地位,但全年却通过相反的过程来部分抵消。在春季和夏季,由于水温升高,生物学上的下降部分抵消了pCO2的增加。在秋季和冬季,由于冷却水的作用,碳的垂直夹带缓和了pCO2的减少。平均每年,海-海碳通量,生物学,混合和平流对海水pCO2都有净影响。尽管在季节上很重要,但温度每年对pCO2和海气碳通量的影响很小,通过温度驱动的溶解度变化仅占海洋碳吸收量的约15-20%.;第二项研究再次发现了对侧向过程的重要作用参与调节北太平洋过渡带的生物地球化学现象。该区域年复一年吸收大气中碳的能力是通过从地表水中排放碳的过程来维持的:有机碳垂直排放到深度,以及碳横向横向地转对流到区域之外。仅横向对流就决定了汇区的位置:在平均每年影响海水pCO 2的过程中,只有DIC的地转差异使过渡带纬度的pCO2降低得不成比例,这比周围地区的大气CO2吸收更大本文确定并量化了北太平洋过渡带生物地球化学特征的驱动过程,发现该区域的大规模环流在调节这些过程中起着重要作用。 NPTZ独特的物理海洋学特征,尤其是横向运输,支持与相邻水域明显不同的生物学和化学属性。

著录项

  • 作者

    Ayers, Jennifer Marie.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Climate Change.;Physical Oceanography.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号