首页> 外文学位 >Modeling Earth's Outer Radiation Belt Electron Dynamics---Radial Diffusion, Heating, and Loss.
【24h】

Modeling Earth's Outer Radiation Belt Electron Dynamics---Radial Diffusion, Heating, and Loss.

机译:模拟地球的外部辐射带电子动力学-径向扩散,加热和损耗。

获取原文
获取原文并翻译 | 示例

摘要

Earth's outer radiation belt is a relativistic electron environment that is hazardous to space systems. It is characterized by large variations in the electron flux, which are controlled by the competition between source, transport, and loss processes. One of the central questions in outer radiation belt research is to resolve the relative contribution of radial diffusion, wave heating, and loss to the enhancement and decay of the radiation belt electrons. This thesis studies them together and separately. Firstly, we develop an empirical Fokker-Planck model that includes radial diffusion, an internal source, and finite electron lifetimes parameterized as functions of geomagnetic indices. By simulating the observed electron variations, the model suggests that the required magnitudes of radial diffusion and internal heating for the enhancement of energetic electrons in the outer radiation belt vary from storm to storm, and generally internal heating contributes more to the enhancements of MeV energy electrons at L=4 (L is approximately the radial distance in Earth radii at the equator). However, since the source, transport, and loss terms in the model are empirical, the model results have uncertainties.;To eliminate the uncertainty in the loss rate, both the precipitation and the adiabatic loss of radiation belt electrons are quantitatively studied. Based on the observations from Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), a Drift-Diffusion model is applied to quantify electron precipitation loss, which is the dominant non-adiabatic loss mechanism for electrons in the heart of the outer radiation belt. Model results for a small storm, a moderate storm, and an intense storm indicate that fast precipitation losses of relativistic electrons, on the time scale of hours, persistently occur in the storm main phases and with more efficient losses at higher energies over wide range of L regions. Additionally, calculations of adiabatic effects on radiation belt electrons at low altitudes demonstrate that the adiabatic flux drop of electrons during the storm main phase is both altitude and storm dependent. During the main phase of a moderate geomagnetic storm, due solely to adiabatic effects a satellite at low altitude sees either zero electron flux or a fractional flux drop depending on its altitude.;To physically quantify the radial diffusion rate, we use power spectral density and global mode structure of the Ultra-Low-Frequency (ULF) waves, which are derived from the Lyon-Fedder-Mobarry (LFM) MHD simulation and validated by field data from real satellites. The calculated total diffusion rate is shown to be dominated by the contribution from magnetic field perturbations, and much less from the electric field. Fast diffusion generally occurs when solar wind dynamic pressure is high or nightside geomagnetic activity is strong and with higher diffusion rates at higher L regions.;Work performed in this thesis provides realistic loss rate and radial diffusion rate of radiation belt electrons, as well as a comprehensive Fokker-Planck model that can take the loss and radial diffusion rates as inputs and then determine the internal heating rate with less uncertainty. By this approach, we will be able to quantitatively understand the relative contribution of radial diffusion, wave heating, and loss to the variations of radiation belt electrons.
机译:地球的外部辐射带是相对论的电子环境,对太空系统有害。它的特点是电子通量有很大的变化,这受源,输运和损耗过程之间的竞争控制。外部辐射带研究的中心问题之一是解决径向扩散,波加热和损耗对辐射带电子增强和衰减的相对影响。本文一起研究它们。首先,我们开发了一个经验性的Fokker-Planck模型,该模型包括径向扩散,内部源以及参数化为地磁指数的有限电子寿命。通过模拟观察到的电子变化,该模型表明,为了增强外辐射带中的高能电子,径向扩散和内部加热的幅度因风暴而异,通常内部加热对提高MeV能量电子的贡献更大在L = 4时(L大约是赤道处的地球半径的径向距离)。但是,由于模型中的源,输运和损耗项都是经验性的,因此模型结果具有不确定性。为了消除损耗率的不确定性,对辐射带电子的降水和绝热损耗进行了定量研究。基于太阳异常和磁层粒子探测器(SAMPEX)的观测结果,使用了漂移扩散模型来量化电子沉淀损失,这是外辐射带心脏中电子的主要非绝热损失机制。小风暴,中风暴和强风暴的模型结果表明,相对时间电子的快速降水损失在几小时的时间尺度上持续发生在风暴的主要阶段,在更高的能量范围内,较高能量下的损失效率更高。 L个地区。此外,低空辐射带电子绝热效应的计算表明,风暴主相期间电子的绝热通量下降与海拔和风暴有关。在中等地磁风暴的主要阶段,仅由于绝热效应,低海拔的卫星会根据其海拔高度看到零电子通量或分数通量下降;为了物理地量化径向扩散率,我们使用功率谱密度和超低频(ULF)波的全局模式结构,其源自里昂·费德·莫伯里(LFM)MHD模拟,并通过来自真实卫星的现场数据进行了验证。结果表明,计算出的总扩散率受磁场扰动的支配,而不受电场干扰的支配。快速扩散通常发生在太阳风动压较高或夜间地磁活动较强且在较高的L区域具有较高的扩散速率时。;本文中的工作提供了辐射带电子的实际损耗率和径向扩散率,以及全面的Fokker-Planck模型,可以将损耗和径向扩散率作为输入,然后以较少的不确定性确定内部加热率。通过这种方法,我们将能够定量地了解径向扩散,波加热和损耗对辐射带电子变化的相对贡献。

著录项

  • 作者

    Tu, Weichao.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.;Physics Astrophysics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号