首页> 外文学位 >Bayesian Sparse Learning for High Dimensional Data.
【24h】

Bayesian Sparse Learning for High Dimensional Data.

机译:高维数据的贝叶斯稀疏学习。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we develop some Bayesian sparse learning methods for high dimensional data analysis. There are two important topics that are related to the idea of sparse learning -- variable selection and factor analysis. We start with Bayesian variable selection problem in regression models. One challenge in Bayesian variable selection is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In the first part of this thesis, instead of using MCMC, we propose a new computational approach based on sequential Monte Carlo (SMC), which we refer to as particle stochastic search (PSS). We illustrate PSS through applications to linear regression and probit models.;Besides the Bayesian stochastic search algorithms, there is a rich literature on shrinkage and variable selection methods for high dimensional regression and classification with vector-valued parameters, such as lasso (Tibshirani, 1996) and the relevance vector machine (Tipping, 2001). Comparing with the Bayesian stochastic search algorithms, these methods does not account for model uncertainty but are more computationally efficient. In the second part of this thesis, we generalize this type of ideas to matrix valued parameters and focus on developing efficient variable selection method for multivariate regression. We propose a Bayesian shrinkage model (BSM) and an efficient algorithm for learning the associated parameters .;In the third part of this thesis, we focus on the topic of factor analysis which has been widely used in unsupervised learnings. One central problem in factor analysis is related to the determination of the number of latent factors. We propose some Bayesian model selection criteria for selecting the number of latent factors based on a graphical factor model. As it is illustrated in Chapter 4, our proposed method achieves good performance in correctly selecting the number of factors in several different settings. As for application, we implement the graphical factor model for several different purposes, such as covariance matrix estimation, latent factor regression and classification.
机译:在本文中,我们开发了一些用于高维数据分析的贝叶斯稀疏学习方法。与稀疏学习的思想相关的两个重要主题是变量选择和因子分析。我们从回归模型中的贝叶斯变量选择问题开始。贝叶斯变量选择的一项挑战是在确定高后验概率区域的同时,充分搜索巨大的模型空间。在过去的几十年中,主要重点是将马尔可夫链蒙特卡罗(MCMC)算法用于这些目的。在本文的第一部分,我们提出了一种基于顺序蒙特卡洛(SMC)的新的计算方法,而不是使用MCMC,我们将其称为粒子随机搜索(PSS)。我们通过应用到线性回归和概率模型来说明PSS .;除了贝叶斯随机搜索算法外,还有大量关于收缩和变量选择方法的文献,这些方法用于对具有向量值参数(例如套索)的高维回归和分类(Tibshirani,1996 )和相关向量机(Tipping,2001)。与贝叶斯随机搜索算法相比,这些方法不考虑模型不确定性,但计算效率更高。在本文的第二部分中,我们将这种思想概括为矩阵值参数,并着重于开发用于多元回归的有效变量选择方法。我们提出了一种贝叶斯收缩模型(BSM)和一种用于学习相关参数的有效算法。在本文的第三部分中,我们着重讨论了在无监督学习中广泛使用的因子分析这一主题。因子分析中的一个核心问题与确定潜在因子的数量有关。我们提出了一些贝叶斯模型选择标准,用于基于图形因子模型选择潜在因子的数量。正如第4章所说明的那样,我们提出的方法在正确选择几个不同设置中的因子数量方面取得了良好的性能。对于应用程序,我们出于多种不同目的实现了图形因子模型,例如协方差矩阵估计,潜在因子回归和分类。

著录项

  • 作者

    Shi, Minghui.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号