首页> 外文学位 >Design and optimization of fuel cell/battery/supercapacitor hybrid power sources for electric vehicles.
【24h】

Design and optimization of fuel cell/battery/supercapacitor hybrid power sources for electric vehicles.

机译:电动汽车燃料电池/电池/超级电容器混合电源的设计和优化。

获取原文
获取原文并翻译 | 示例

摘要

Fuel Cell powered Hybrid electric Vehicles (FCHVs) are considered to be the most promising alternatives of Internal Combustion Engines (ICE) vehicles. One of the most important research aspects of FCHVs is their hybrid power sources study; however, current research is insufficient and there are many open problems to be further studied, such as hybrid power sources topology analysis, vehicle power sources design and optimization, and related dynamic models construction. Also a powerful simulation package of FCHVs is indispensable to evaluate and support the related research. Addressing these problems, this dissertation carries out a series of studies step by step which includes the following three parts.; The first part is focused on modeling electrochemical components. A novel fully dynamic lithium-ion battery model is developed, which accounts for battery nonlinear equilibrium potentials, rate- and temperature-dependencies, thermal effects and response to transient power demand. A multi-stage resistor capacitor ladder supercapacitor model is constructed with unique characteristics including automatic order selection and capacity scaling. In the modeling of a Proton Exchange Membrane (PEM) fuel cell system, each component is first modeled separately, and then these modules are coupled together into an integrative unit.; The second part concentrates on the study of hybrid power source topology analysis. Firstly, the concepts of passive hybrid and active hybrid are defined. Secondly, an active hybrid is constructed and explored through both experiments and simulations. Finally, the comparison of passive and active hybrids, along with battery alone, is undertaken to study the performance extension of power sources using power converters. The study process is further extended and applied in hybrid power source design for FCHVs.; In the third part, a complete simulation package for FCHVs is constructed in the Virtual Test Bed (VTB) computational environment. The modeling approach is forward looking (causal) and the system setup is modular, thus the package recognizes the dynamic interaction among different vehicle components and provides a powerful capability to simulate different topologies. After that, a novel 8-step energy component size determination and optimization method is proposed, which is based on the operation of the decreasing rearrangement distribution function of drive cycles.
机译:燃料电池驱动的混合动力汽车(FCHV)被认为是内燃机(ICE)车辆最有希望的替代方案。 FCHV的最重要的研究方面之一是其混合动力源研究。但是,目前的研究还不够,混合动力电源拓扑分析,车辆动力源的设计与优化以及相关的动力学模型构建等还有很多未解决的问题。此外,强大的FCHV仿真包对于评估和支持相关研究也是必不可少的。针对这些问题,本论文分步进行了一系列研究,包括以下三个部分。第一部分着重于电化学成分的建模。开发了一种新颖的全动态锂离子电池模型,该模型考虑了电池的非线性平衡电位,速率和温度依赖性,热效应以及对瞬态功率需求的响应。构建具有多级电阻器电容器梯形超级电容器模型,该模型具有独特的特性,包括自动顺序选择和容量缩放。在质子交换膜(PEM)燃料电池系统的建模中,首先分别对每个组件进行建模,然后将这些模块耦合在一起成为一个集成单元。第二部分重点研究混合电源拓扑分析。首先,定义了被动混合动力和主动混合动力的概念。其次,通过实验和模拟,构造并探索了一个主动混合动力车。最后,对无源和有源混合动力以及单独的电池进行了比较,以研究使用功率转换器的电源的性能扩展。研究过程进一步扩展,并应用于FCHV的混合电源设计中。在第三部分中,在虚拟测试台(VTB)的计算环境中构建了FCHV的完整仿真程序包。该建模方法具有前瞻性(因果关系),并且系统设置是模块化的,因此该软件包可以识别不同车辆部件之间的动态交互,并提供强大的功能来模拟不同的拓扑。在此基础上,提出了一种基于减少驱动循环重排分布函数的新的8步能量分量大小确定和优化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号