首页> 外文学位 >Topology Optimization of Flow Problems Modeled by the Incompressible Navier-Stokes Equations.
【24h】

Topology Optimization of Flow Problems Modeled by the Incompressible Navier-Stokes Equations.

机译:用不可压缩的Navier-Stokes方程建模的流动问题的拓扑优化。

获取原文
获取原文并翻译 | 示例

摘要

This work is concerned with topology optimization of incompressible flow problems. While size and shape optimization methods are limited to modifying existing boundaries, topology optimization allows for merging boundaries as well as creating new ones. Since topology optimization methods do not require a good initial guess, they are powerful tools for finding new and non-intuitive designs. The latter is particularly beneficial for flow problems which are typically nonlinear as well as transient. Depending on the complexity of the flow problem, predicting a solution may be challenging. Determining an improved or optimized design for complex flow problems is an even greater challenge as it not only requires a solution to the flow problem for a given design, but also a prediction on how a design change will affect the flow. Fluid topology optimization commonly uses a material interpolation approach for describing the geometry during the optimization process: solid material is modeled via an artificial porosity that penalizes the flow velocities. While this approach works well for simple steady-state problems aiming to minimize the dissipated energy, the current study shows that using the porosity approach may cause issues for more complex problems such as coupled fluid-structure-interaction (FSI) systems, unsteady flow problems or problems aiming to match a target performance. To overcome these issues a geometric boundary description based on level sets is developed. This geometric boundary description is applied to both, a steady-state hydrodynamic lattice Boltzmann formulation and a stabilized finite element formulation of the steady-state Navier-Stokes equations. The enforcement of the no-slip condition along the fluid-solid interface is handled via an immersed boundary technique in case of the lattice Boltzmann method, while the Navier-Stokes formulation uses an extended finite element method (XFEM). Through the research conducted in this work, the spectrum of flow problems that can be solved by topology optimization techniques has been broadened significantly.
机译:这项工作涉及不可压缩流动问题的拓扑优化。尺寸和形状优化方法仅限于修改现有边界,而拓扑优化可合并边界以及创建新边界。由于拓扑优化方法不需要很好的初步猜测,因此它们是查找新的和非直观设计的强大工具。后者对于通常是非线性以及瞬态的流动问题特别有益。根据流量问题的复杂程度,预测解决方案可能会很困难。为复杂的流问题确定改进或优化的设计是一个更大的挑战,因为它不仅需要解决给定设计的流问题,而且还需要对设计变更将如何影响流的预测。流体拓扑优化通常使用材料插值法来描述优化过程中的几何形状:固体材料是通过人工孔隙度进行建模的,这会不利于流速。尽管此方法对于旨在最小化耗散能量的简单稳态问题非常有效,但当前的研究表明,使用孔隙率方法可能会导致更复杂的问题,例如流体-结构-相互作用(FSI)系统,非稳态流动问题或旨在达到目标效果的问题。为了克服这些问题,开发了基于水平集的几何边界描述。此几何边界描述适用于稳态Navier-Stokes方程的稳态流体动力晶格Boltzmann公式和稳定有限元公式。在点阵玻尔兹曼方法的情况下,通过浸入边界技术处理沿着流体-固体界面的防滑条件,而纳维尔-斯托克斯公式则使用扩展的有限元方法(XFEM)。通过这项工作的研究,可以通过拓扑优化技术解决的流动问题的范围得到了广泛拓宽。

著录项

  • 作者

    Kreissl, Sebastian.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.;Operations Research.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号