首页> 外文学位 >Crop improvement through genetic engineering: Development of transformation technologies and production of stress tolerant transgenic crops.
【24h】

Crop improvement through genetic engineering: Development of transformation technologies and production of stress tolerant transgenic crops.

机译:通过基因工程改善作物:开发转化技术和生产耐逆转基因作物。

获取原文
获取原文并翻译 | 示例

摘要

With the increase of environmental degradation, the crop improvement of stress tolerance becomes more important. Little success, however, has been achieved through traditional breeding method because of the limited availability of germplasm and the complexity of the genetic control of stress tolerance traits. Genetic engineering allows gene transfer between unrelated species. It greatly widens the genetic resource and is a good alternative for the improvement of stress tolerance. The goal of this study is to produce stress-tolerant maize and soybean to adapt to environmental stresses. Genetic transformation is used as a tool to achieve the goal. Since transformation technologies in maize and soybean are not robust in the respects of transformation efficiency and the quality of resulted products, the study also was focused on the development and optimization of maize and soybean transformation technologies.; Two available soybean transformation protocols were explored. Factors affecting the transformation efficiency of Agrobacterium-mediated cotyledonary node protocol were studied and optimized. Efforts also were made to repeat the controversial transformation protocol-soybean pollen-tube pathway transformation protocol because of the great interest with the tissue-culture free feature of the protocol. The result indicated that soybean pollen-tube pathway transformation is not reproducible. This study established a new Agrobacterium-mediated maize transformation protocol using a standard binary vector system. The resulting transgenic maize plants then were evaluated. Results showed that transformants generated from this new method have better qualities compared with those obtained from particle bombardment transformation.; This study showed that the expression of a tobacco mitogen-activated protein kinase kinase kinase gene, Nicotiana protein kinase 1 (NPK1) gene improved the freezing and drought tolerance in maize. This is the first report that freezing and drought traits were achieved in major crop maize through genetic engineering approach. Transgenic maize was identified to have elevated levels of several stress related gene expression, including DREB1, EREBP, EREBR1, GST and small HSP, indicating that the active NPK1 has induced the oxidative signaling pathway as expected and, therefore, protected maize plants from stress damage. NPK1 transgenic soybean also was produced. However, no advantage in drought tolerance was detected in these transgenic soybeans.
机译:随着环境退化的加剧,提高作物的抗逆性变得越来越重要。然而,由于种质资源有限以及抗逆性状遗传控制的复杂性,通过传统育种方法取得的成功很少。基因工程允许不相关物种之间的基因转移。它极大地拓宽了遗传资源,并且是提高抗逆性的好选择。这项研究的目标是生产耐胁迫的玉米和大豆,以适应环境胁迫。遗传转化被用作实现该目标的工具。由于玉米和大豆的转化技术在转化效率和最终产品的质量方面并不稳健,因此该研究也侧重于玉米和大豆转化技术的开发和优化。探索了两种可用的大豆转化方案。研究并优化了影响 Agrobacterium 介导的子叶节点协议转化效率的因素。由于对协议的无组织培养功能的极大兴趣,还努力重复有争议的转化方案-大豆花粉管途径转化方案。结果表明大豆花粉管途径的转化是不可再现的。本研究建立了一个使用标准的二元载体系统的新的 Agrobacterium 介导的玉米转化方案。然后评估所得的转基因玉米植物。结果表明,与通过粒子轰击转化获得的转化子相比,这种新方法产生的转化子具有更好的质量。这项研究表明,烟草有丝分裂原激活的蛋白激酶激酶基因 Nicotiana 蛋白激酶1(NPK1)的表达提高了玉米的抗冻性和抗旱性。这是第一份通过基因工程方法在主要农作物玉米中获得冷冻和干旱特性的报告。鉴定出转基因玉米的几种胁迫相关基因表达水平升高,包括 DREB1,EREBP,EREBR1,GST 和小的 HSP ,表明活性NPK1诱导了氧化预期的信号转导途径,因此保护了玉米植物免受胁迫损害。还生产了 NPK1 转基因大豆。然而,在这些转基因大豆中未发现抗旱性的优势。

著录项

  • 作者

    Shou, Huixia.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Biology Genetics.; Biology Plant Physiology.; Agriculture Agronomy.; Agriculture Animal Culture and Nutrition.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遗传学;植物学;农学(农艺学);饲料;
  • 关键词

  • 入库时间 2022-08-17 11:44:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号