首页> 外文学位 >Constitutive modeling for polycrystalline aluminum alloy extrusions and application to hydroforming of thin-walled tubes.
【24h】

Constitutive modeling for polycrystalline aluminum alloy extrusions and application to hydroforming of thin-walled tubes.

机译:多晶铝合金挤压件的本构模型及其在薄壁管材液压成形中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Hydroforming of thin-walled hollow extrusions has become popular with automotive and materials industries for making complex structural components. Because most of the hydroformed parts are made with steel, very little research has been done on the hydroforming of extruded aluminum tubes, which are lighter and environmentally friendly. As for any forming operation, computer modeling, using finite element analysis (FEA), is today a common tool used at the design stage of the process. However, in order to obtain realistic predictions, accurate material descriptions (constitutive models) will be needed. In this work, several material models have been developed for accurate simulation of metal forming processes, specifically hydroforming of extruded aluminum tubes.; A Taylor-type polycrystalline model, based on a rate-independent single crystal yield surface and rigid plasticity, has been developed and implemented into ABAQUS/Explicit finite element (FE) code using VUMAT. It has served directly as a constitutive law in the FE to calculate the crystallographic texture evolution during the hydroforming of an extruded aluminum tube. Initial crystallographic texture measured with OIM and uniaxial tensile test results are input to this FEA model. Although very accurate in representing the material anisotropy, finite element analysis based on direct use of a polycrystal model is extremely CPU-intensive, making it unfeasible for design purposes.; To develop the most accurate phenomenological model for forming of extruded aluminum tubes, this polycrystal model was used to predict the anisotropy coefficients of Barlat's Yld96 yield function. This phenomenological anisotropic yield function was also implemented into ABAQUS/Implicit finite element code, using UMAT, for simulation of bulging and hydroforming of a 6061-T4 extruded aluminum tubes. It was shown that compared with von Mises and Hill's 1948 yield function, the Yld96 material model's predictions are in better agreement with experimental results.; In order to take into account the anisotropic hardening of aluminum tubes a new flow potential, as a function of the anisotropy coefficients and deviatoric stresses, was proposed. The evolution of the anisotropy coefficients was proposed to be a linear function of the strain path, with its proportionality constant determined from experimental measurements. This model was also implemented into ABAQUS/Implicit code and shown to be capable of predicting deformation strains very accurately. It is concluded that in the absence of experimental results or reliable data, the anisotropic model could be used at early design stage to evaluate the accuracy of the phenomenological models' predictions.
机译:薄壁空心挤压件的液压成型已在汽车和材料行业中广泛用于制造复杂的结构部件。由于大多数液压成型零件都是由钢制成的,因此对挤压铝管进行液压成型的研究很少,因为铝制管重量更轻且对环境友好。对于任何成形操作,使用有限元分析(FEA)的计算机建模如今已成为在过程设计阶段使用的通用工具。但是,为了获得现实的预测,将需要准确的材料描述(本构模型)。在这项工作中,已经开发了几种材料模型来精确模拟金属成型过程,特别是挤压铝管的液压成型。已经开发了基于速率无关的单晶屈服面和刚性可塑性的泰勒型多晶模型,并使用VUMAT将其实现为ABAQUS / Explicit有限元(FE)代码。它直接在有限元分析中作为本构定律,用于计算挤压铝管液压成形过程中的晶体织构演变。用OIM测量的初始晶体织构和单轴拉伸试验结果输入到此FEA模型。尽管基于材料各向异性的表示非常准确,但是基于直接使用多晶模型的有限元分析会占用大量CPU资源,因此无法用于设计目的。为了建立最精确的铝挤压成形的现象学模型,该多晶模型用于预测Barlat的Yld96屈服函数的各向异性系数。使用UMAT,此现象学各向异性屈服函数也已实现到ABAQUS / Implicit有限元代码中,用于模拟6061-T4挤压铝管的膨胀和液压成形。结果表明,与von Mises和Hill的1948年屈服函数相比,Yld96材料模型的预测与实验结果更加吻合。为了考虑铝管的各向异性硬化,提出了一种新的流动势,它是各向异性系数和偏应力的函数。各向异性系数的演化被认为是应变路径的线性函数,其比例常数由实验测量确定。该模型也已在ABAQUS / Implicit代码中实现,并显示出能够非常准确地预测变形应变的能力。结论是,在缺乏实验结果或可靠数据的情况下,各向异性模型可以在设计初期用于评估现象学模型预测的准确性。

著录项

  • 作者

    Guan, Yabo.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:44:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号