首页> 外文学位 >Computational corrections for three-dimensional wide field fluorescence microscopy.
【24h】

Computational corrections for three-dimensional wide field fluorescence microscopy.

机译:三维宽视野荧光显微镜的计算校正。

获取原文
获取原文并翻译 | 示例

摘要

Microscopy is a key means of analyzing biological activity and structures, covering a level accessible by few other approaches. Increasingly, live microscopy is being used as a unique means to study the dynamics, of structure, localization, and motion of processes to develop and test hypotheses of cellular dynamics. However, analysis of sub-micron structures within living specimens often becomes difficult or impossible as the image quality degrades with increasing depth in the sample. This degradation results from aberrations due to the specimen's refractive index properties, which alter image formation at the detector. These aberrations range from a general, depth-dependent-spherical aberration for relatively homogeneous samples, to position-dependent aberrations for more complex samples.; My thesis project focuses on developing computational corrections of live specimen imaging problems encountered with widefield fluorescence microscopy. The main goal of this work is to study the imaging process for widefield microscopy and to develop improved deconvolution approaches based-on-the information gathered. A significant part of this work has been to develop an improved description of an optical microscope, based on techniques developed for astronomy. My project had been subdivided into the following specific steps for further discussion below: (1) Creation of a compact and modular description of the wide field microscope system using phase retrieval; (2) Development and use of depth dependent deconvolution approaches to correct for aberrations from a general sample refractive index mismatch; and (3) estimation of spatially varying PSFs by using ray tracing techniques for the future application in image deconvolution of optically complex samples.
机译:显微镜检查是分析生物活性和结构的关键手段,涵盖了其他方法无法达到的水平。越来越多地使用实时显微镜作为研究动力学,结构,定位和过程运动以开发和测试细胞动力学假设的独特手段。但是,随着图像质量随着样品深度的增加而降低,分析活体样品中的亚微米结构通常变得困难或不可能。这种劣化是由于样品的折射率特性引起的像差导致的,这些像差会改变检测器上的图像形成。这些像差的范围从相对均匀的样本的一般的深度相关的球差到复杂的样本的位置相关的像差。我的论文项目专注于开发对宽视野荧光显微镜遇到的活体标本成像问题的计算校正。这项工作的主要目的是研究宽视野显微镜的成像过程,并根据所收集的信息开发改进的反卷积方法。这项工作的重要部分是根据为天文学开发的技术来开发光学显微镜的改进描述。我的项目已细分为以下具体步骤,以便在下面进行进一步的讨论:(1)使用相位检索创建广域显微镜系统的紧凑和模块化描述; (2)开发和使用深度相关的反卷积方法来校正一般样品折射率失配引起的像差; (3)使用光线跟踪技术估算空间变化的PSF,以备将来在光学复杂样本的图像反卷积中应用。

著录项

  • 作者

    Hanser, Bridget Martha.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Biophysics General.; Physics Optics.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学 ; 光学 ; 细胞生物学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号