首页> 外文学位 >Structural and functional analysis of the ryanodine receptor: Multiple conductance states regulated by allosteric cation interactions and the identification of hyperreactive sulfhydryls
【24h】

Structural and functional analysis of the ryanodine receptor: Multiple conductance states regulated by allosteric cation interactions and the identification of hyperreactive sulfhydryls

机译:ryanodine受体的结构和功能分析:变构阳离子相互作用和高反应性巯基的鉴定调节多种电导状态

获取原文
获取原文并翻译 | 示例

摘要

Ryanodine receptors (RyRs) are large (∼2.3 MDa) homotetrameric Ca 2+ release channels of endo/sarcoplasmic reticulum (ER/SR), expressed throughout the body as three isoforms (RyR1--3). RyR mediated increases in cytosolic Ca2+ are a critical component of many intracellular signaling cascades. Thus, cellular homeostasis requires tight, mulit-faceted regulation of RyRs. The focus of this dissertation is a functional analysis of RyR regulation by Ca2+ and Mg2+ using RyR3/RyR1 chimeras and a structural identification of redox-sensing, hyperreactive sulfhydryls.;Ca2+ and Mg2+ are important endogenous modulators of the RyR. Ca2+ activation and inhibition likely occur through multiple coordinated sites: muM activation through high affinity (H) sites and mM inhibition through low affinity (L) sites. Mg2+ inhibition is thought to occur through competition with Ca2+ for H sites and binding at L sites. In this dissertation, biochemical and biophysical analyses of RyR3/RyR1 chimeras reveal previously unreported allosteric interactions between cation activation and inhibition sites, which regulate multiple conductance states.;RyR1 has long been known to undergo redox modulation, with initial studies focusing on oxidative damage evolving to include subtle and generally reversible redox modulations associated with intracellular signaling. Recent reports indicate the RyR undergoes covalent adduction by nitric oxide (NO), redox-induced shifts in cation regulation, and noncovalent interactions driven by the transmembrane redox potential that enable redox sensing. These discrete, usually reversible RyR modulations are thought to be mediated by 6--8 hyperreactive sulfhydryls. Only cys-3635, considered the exclusive NO binding site, has previously been identified. This work outlines the development and successful application of a mass spectrometric methodology to identify 7 hyperreactive redox-sensing sulfhydryls of RyR1.;The structural and functional studies presented here advance the understanding of RyR regulation by Ca2+, Mg2+ and provide the primary sequence location of redox-sensitive cysteines. The chimeric analysis introduces a novel allosteric and multi-state model of RyR regulation by cations. The identification of redox-sensing sulfhydryls introduces a mass spectrometric assay for reactive cysteines and provides the locations for point mutational analysis of redox regulation. The new RyR allosteric model and cysteine identities established here serve as a foundation for future investigations of RyR regulation.
机译:Ryanodine受体(RyRs)是内/肌浆网(ER / SR)的较大的四聚体Ca 2+释放通道(〜2.3 MDa),在体内以三种同工型(RyR1--3)表达。 RyR介导的胞质Ca2 +的增加是许多细胞内信号传导级联的关键组成部分。因此,细胞稳态需要对RyRs进行严格的多面调节。本论文的重点是利用RyR3 / RyR1嵌合体对Ca2 +和Mg2 +调节RyR的功能进行分析,并对氧化还原敏感的高反应性巯基进行结构鉴定。Ca2+和Mg2 +是RyR的重要内源性调节剂。 Ca2 +激活和抑制可能通过多个协调位点发生:通过高亲和力(H)位点的muM激活和通过低亲和力(L)位点的mM抑制。 Mg2 +抑制被认为是通过与Ca2 +竞争H位点并在L位点结合而发生的。在本文中,RyR3 / RyR1嵌合体的生化和生物物理分析揭示了以前未报道的阳离子活化和抑制位点之间的变构相互作用,后者调节着多个电导状态。包括与细胞内信号传导相关的微妙且通常可逆的氧化还原调节。最近的报道表明,RyR受到一氧化氮(NO)的共价加成,氧化还原诱导的阳离子调节变化以及跨膜氧化还原电位驱动的非共价相互作用,从而实现了氧化还原感测。这些离散的,通常是可逆的RyR调节被认为是由6--8高反应性巯基介导的。以前仅鉴定了被认为是排他性NO结合位点的cys-3635。这项工作概述了质谱方法的开发和成功应用,以鉴定RyR1的7种高反应性氧化还原敏感巯基。敏感的半胱氨酸。嵌合分析引入了一种新颖的变构和多态模型,可通过阳离子调节RyR。氧化还原敏感巯基的鉴定引入了反应性半胱氨酸的质谱分析,并为氧化还原调节的点突变分析提供了位置。这里建立的新的RyR变构模型和半胱氨酸身份为将来对RyR调控的研究奠定了基础。

著录项

  • 作者

    Voss, Andrew Alvin.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Biochemistry.;Biophysics.;Pharmacology.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号