首页> 外文学位 >Type I interferon is not just for viruses: Cytosolic sensing of bacterial nucleic acids.
【24h】

Type I interferon is not just for viruses: Cytosolic sensing of bacterial nucleic acids.

机译:I型干扰素不仅用于病毒:细菌核酸的胞质感知。

获取原文
获取原文并翻译 | 示例

摘要

Initial detection of invading microorganisms is one of the primary tasks of the innate immune system. However, the molecular mechanisms by which pathogens are recognized remain incompletely understood. I used the intracellular gram-negative Legionella pneumophila to study mechanisms by which the innate immune system distinguishes virulent bacteria from avirulent bacteria. I have made the surprising observation that a cytosolic RNA immunosurveillance pathway (called the RIG-I/MDA5 pathway), thought primarily to detect viruses, is also involved in the innate immune response to the intracellular vacuolar bacterial pathogen, Legionella pneumophila. In the response to viruses, the RIG-I/MDA5 immunosurveillance pathway has been shown to respond to viral RNA or DNA. We found that the RIG-I pathway was required for the response to L. pneumophila RNA, but was not required for the response to L. pneumophila DNA. Thus one explanation of my results is that L. pneumophila RNA accesses the host cell cytosol via its type IV secretion system, where it triggers the RIG-I/MDA5 pathway. This is unexpected since bacteria have not previously been thought to translocate RNA into host cells. I was able to isolate IFN-stimulatory activity by immunoprecipitating RIG-I from cells infected with T4SS-competent Legionella. In the future, I will utilize deep sequencing technology to pinpoint the origin and identity of RIG-I bound ligands during T4SS+ L. pneumophila infection.;I also found that L. pneumophila suppresses the RIG-I/MDA5 pathway by a translocated effector protein, SdhA. Several viral repressors of the RIG-I/MDA5 pathway have been described, but bacterial repressors of RIG-I/MDA5 are not known. Thus, this study provides novel insights into the molecular mechanisms by which the immune system detects bacterial infection, and conversely, by which bacteria suppress innate immune responses.;While all bacteria are capable of inducing type I interferon, many species do so independently of the cytosolic RNA sensing pathway that responds to Legionella. Therefore, I, along with many Vance lab members, investigated the mechanism by which cyclic dinucleotides (c-di-GMP and c-di-AMP), bacterial second-messenger molecules, activate a robust and specific host response in macrophages. c-di-GMP has been shown to activate TBK-1, IRF3, NF-kappaB, and MAP kinases to induce type I interferon, in manner independently of known TLR and cytosolic nucleic acid sensing pathways. In parallel studies in the lab, ENU mutagenesis of mice identified a mouse mutant that completely abrogates the host response to cyclic dinucleotides. Sequencing identified a missense mutation in the open reading frame of Sting, which converts an isoleucine to aspargine in the C-terminal globular domain, rendering STING protein undetectable in mutant macrophages. Previous reports of Sting demonstrated a role for this multiple transmembrane domain containing protein that localizes to the endoplasmic reticulum and/or mitochondrial associated-membrane (MAM) in cytosolic DNA and RNA sensing pathways. I found that overexpression of the ENU-induced mutant Sting allele failed to induce type I interferon, despite robust expression of the protein. Surprisingly, studies in the Vance lab have shown that wild type STING is capable of binding c-di-GMP, in contrast to the ENU mutant allele, which does not bind. I found that a soluble C-terminal truncation of STING (amino acids 138-379), which removes most predicted transmembrane domains, is sufficient to bind c-di-GMP. Taken together, genetic studies have demonstrated an essential role for Sting in the innate immune response to cyclic dinucleotides and biochemical data shows that the C-terminal region of the protein functions as the direct sensor of cyclic dinucleotides.;The experimental line of investigation presented in my thesis dissects the pathways by which the innate immune system recognizes infection of virulent bacteria. Both stories discussed herein demonstrate the importance of innate immune detection of nucleic acids; molecules microbes cannot live without. Interestingly, it is the compartment in which nucleic acids are present that ultimately triggers innate immune receptors. The demonstration that cytosolic RNA sensors detect secretion system competent Legionella illustrates the consequence of breaching the phagosomal barrier. While bacterial replication may be restricted to membrane bound compartments, accessing the host cell cytosol via the T4SS alerts host sensors to the pathogen's presence. Previously thought only to recognize viral infection, I have demonstrated the breadth of cytosolic RNA sensors in recognizing not only viruses, but also bacteria. STING's ability to detect cyclic dinucleotides delivered to the host cell cytosol exemplifies how the innate immune system has honed in on a uniquely bacterial nucleic acid molecule. Cyclic dinucleotides are not only structurally distinct, but their role in regulating virulence factor expression makes them an excellent target for innate immune detection of pathogens.
机译:入侵微生物的初步检测是先天免疫系统的主要任务之一。然而,病原体识别的分子机制仍然不完全了解。我使用细胞内革兰氏阴性的嗜肺军团菌来研究机制,通过这种机制,先天免疫系统可以将有毒细菌与无毒细菌区分开。我做出了令人惊讶的观察,认为主要用于检测病毒的胞质RNA免疫监测途径(称为RIG-I / MDA5途径)也参与了对细胞内液泡细菌病原体嗜肺军团菌的先天免疫应答。在对病毒的反应中,已证明RIG-I / MDA5免疫监视途径对病毒RNA或DNA产生反应。我们发现,RIG-I途径是对肺炎链球菌RNA的响应所必需的,但对肺炎链球菌DNA的响应则不是必需的。因此,对我的结果的一种解释是,嗜肺乳杆菌RNA通过其IV型分泌系统进入宿主细胞胞质溶胶,并触发RIG-I / MDA5途径。这是出乎意料的,因为以前没有人认为细菌能将RNA转移到宿主细胞中。通过从感染T4SS的军团菌感染的细胞中免疫沉淀RIG-1,我能够分离出IFN刺激活性。将来,我将利用深度测序技术来确定T4SS +肺炎支原体感染期间RIG-I结合配体的起源和身份。;我还发现,肺炎支原体通过一种易位的效应蛋白抑制RIG-I / MDA5途径。 ,SdhA。已描述了几种RIG-I / MDA5途径的病毒阻遏物,但尚不知道RIG-I / MDA5的细菌阻遏物。因此,这项研究为免疫系统检测细菌感染的分子机制以及细菌抑制先天免疫反应的分子机制提供了新颖的见解;尽管所有细菌都能够诱导I型干扰素,但许多物种都能够独立于I型干扰素进行诱导。应对军团菌的胞质RNA感应途径。因此,我与许多万斯实验室成员一起研究了机制,环二核苷酸(c-di-GMP和c-di-AMP),细菌第二信使分子在巨噬细胞中激活了强大且特异性的宿主反应。已显示c-di-GMP以独立于已知TLR和胞质核酸传感途径的方式激活TBK-1,IRF3,NF-κB和MAP激酶以诱导I型干扰素。在实验室的平行研究中,小鼠的ENU诱变确定了一种小鼠突变体,该突变体完全消除了宿主对环二核苷酸的应答。测序在Sting的开放阅读框中发现了一个错义突变,该突变将C末端球状结构域中的异亮氨酸转化为天冬酰胺,从而使STING蛋白在突变巨噬细胞中无法检测到。 Sting的先前报道证明了这种多跨膜结构域蛋白在胞质DNA和RNA传感途径中定位于内质网和/或线粒体相关膜(MAM)的作用。我发现,尽管蛋白表达稳定,但ENU诱导的突变Sting等位基因的过表达未能诱导I型干扰素。出乎意料的是,在万斯实验室的研究表明,与不结合的ENU突变等位基因相反,野生型STING能够结合c-di-GMP。我发现STING(氨基酸138-379)的可溶性C端截短可去除大多数预测的跨膜结构域,足以结合c-di-GMP。综上所述,遗传研究已证明Sting在对环二核苷酸的先天免疫应答中起着至关重要的作用,生化数据表明该蛋白的C端区域可作为环二核苷酸的直接传感器。我的论文剖析了先天免疫系统识别有毒细菌感染的途径。本文讨论的两个故事都证明了核酸先天免疫检测的重要性。分子微生物无法生存。有趣的是,正是其中存在核酸的部分最终触发了先天免疫受体。胞质RNA传感器可检测分泌系统胜任军团菌的论点说明了破坏吞噬体屏障的后果。尽管细菌的复制可能仅限于膜结合的区室,但通过T4SS进入宿主细胞的胞质溶胶会警告宿主传感器病原体的存在。以前被认为只能识别病毒感染,我已经证明了胞质RNA传感器不仅可以识别病毒,还可以识别细菌。 STING检测传递到宿主细胞胞质溶胶中的环状二核苷酸的能力说明了先天免疫系统如何在独特的细菌核酸分子上进行磨练。环状二核苷酸不仅在结构上不同,但是它们在调节毒力因子表达中的作用使它们成为病原体固有免疫检测的极佳靶标。

著录项

  • 作者

    Monroe, Kathryn McGee.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Immunology.;Microbiology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号