首页> 外文学位 >Anisotropic Particles: Preparation and Study.
【24h】

Anisotropic Particles: Preparation and Study.

机译:各向异性粒子:制备和研究。

获取原文
获取原文并翻译 | 示例

摘要

Anisotropic particles have received significant attention in self-assembly for the large scale fabrication of hierarchical structures. Janus particles, a specific class of anisotropic particles, have two hemispheres with different materials. Due to the anisotropic nature of the particle shape and interactions, Janus particles have demonstrated interesting properties in interfacial assembly, switchable devices, cargo transport, and optical sensing. The objective of this research is to fabricate novel anisotropic Janus particles and explore their potential unique properties.;One of the driving forces arises from the previous work of bimetallic nanorods and their autonomous motion. The bimetallic nanorod systems undergo chemically powered non- Brownian motion due to the asymmetric distribution of catalytic source for a chemical fuel solution. However, the approach used to prepare the bimetallic nanorods is rather complex. The original design of bimetallic Janus particles is based on a general physical vapor deposition technique -- electron beam evaporation. The resulting bimetallic Janus particles are colloidal silica spheres coated with two differing metals on each hemisphere. This approach allows fabricating bimetallic Janus particles with various combinations of metals that are available for electron beam evaporation.;Chemical transformation of bimetallic Janus particles into other species provides an opportunity to expand the scope of anisotropic particles. The metals on the Janus particles are possible to convert to their corresponding metal oxides and metal sulfides through solid-gas heterogeneous reactions, and therefore, the chemical transformation of the parent bimetallic Janus particles produces a wide array of previously unavailable Janus particle types, including metal/metal oxide, metal/metal sulfide, metal oxide/metal oxide, metal sulfide/metal sulfide, and metal oxide/metal sulfide, which allows tuning their optical, electronic, magnetic and catalytic properties. This vast library of anisotropic particulate building blocks provides a powerful arsenal for engineering the assembly of specific targeted structures and systems.;Autonomous motion is distinctive from Brownian motion. Platinum half-coated Janus particles undergo self-propelled motion, which is induced by the catalytic decomposition of hydrogen peroxide. The average speed of the self-propelled Pt-SiO2 Janus particles increases with increasing the concentration of hydrogen peroxide. Motion direction analyses show that the probability for the Janus particles continuing to travel in nearly same direction goes higher in higher concentrations of hydrogen peroxide. Microscopic observation of the particle motion demonstrates that these Janus particles move, on average, with the platinum-coated region oriented opposite to the direction of motion. The trajectories of the autonomous motion exhibit a directed motion at short time scale but with an overall random behavior at long time scales. Huge benefit can be garnered by taking advantage of the self-propulsion component in the system. The control of the motion of the magnetic Janus particles in solutions of hydrogen peroxide is demonstrated using the external magnetic field. The magnetic Janus particles orient themselves with the equatorial plane parallel to the applied field and the motion direction is perpendicular to the field. The directed motion has a more distinct preferred direction compared to the case in the absence of magnetic field, and the applied field is verified to control the orientation, not influence the speed of the particle motion.;Anisotropic particles are unique building blocks to assemble complex structures. The surface functionalized Janus particles with alkanethiols are adsorbed at the interfaces of liquid-air and liquid-liquid, forming monolayers with metal hemispheres pointing to the same direction. By changing the liquid oil phase, the orientation of the Janus particles can be manipulated, which provides an opportunity to selectively modify the surface in either phase. The preferential orientation in the same direction at interfaces allows for direct transfer of the Janus particles while the desired faces remain in either a "face-down" or "face-up" configuration. An external intervention, magnetic field, is also sought to direct the assembly of the magnetic Janus particles. In the presence of uniform magnetic field, the magnetic Janus particles form staggered chain structures with the chain direction parallel to the direction of the applied field. These chain structures are destroyed due to the capillary force during solvent evaporation. However, these soft structures are successfully locked in place after the solution dries by the addition of ammonium carbonate to the solution, which suggests a promising way to achieve 2D or 3D super structures for the fabrication of photonic crystals and photonic devices.
机译:各向异性粒子在自组装中已经引起了广泛的关注,用于大规模制造层次结构。 Janus粒子是一类特殊的各向异性粒子,具有两个具有不同材料的半球。由于颗粒形状和相互作用的各向异性,Janus颗粒在界面组装,可切换设备,货物运输和光学传感方面表现出令人感兴趣的特性。这项研究的目的是制造新型各向异性的Janus颗粒并探索其潜在的独特性能。;驱动力之一来自双金属纳米棒的先前工作及其自主运动。由于用于化学燃料溶液的催化源的不对称分布,双金属纳米棒系统经历了化学动力的非布朗运动。但是,用于制备双金属纳米棒的方法相当复杂。双金属Janus粒子的原始设计基于一般的物理气相沉积技术-电子束蒸发。所得的双金属Janus颗粒是在每个半球上涂有两种不同金属的胶体二氧化硅球。这种方法允许用可用于电子束蒸发的金属的各种组合来制造双金属Janus颗粒。;双金属Janus颗粒化学转化成其他物种提供了扩大各向异性颗粒范围的机会。 Janus颗粒上的金属可能通过固相气体异质反应转化为相应的金属氧化物和金属硫化物,因此,母体双金属Janus颗粒的化学转化产生了一系列先前无法获得的Janus颗粒类型,包括金属/金属氧化物,金属/金属硫化物,金属氧化物/金属氧化物,金属硫化物/金属硫化物和金属氧化物/金属硫化物,从而可以调节其光学,电子,磁性和催化性质。这个庞大的各向异性颗粒构建库库为设计特定目标结构和系统的组装提供了强大的工具库。自主运动不同于布朗运动。半包覆的铂金Janus颗粒经历自推进运动,这是由过氧化氢的催化分解引起的。自推进式Pt-SiO2 Janus颗粒的平均速度随过氧化氢浓度的增加而增加。运动方向分析表明,在较高浓度的过氧化氢中,Janus粒子继续沿几乎相同的方向行进的可能性更高。微粒运动的微观观察表明,这些Janus微粒平均运动,铂涂层区域的方向与运动方向相反。自主运动的轨迹在短时间尺度上表现出有向运动,但在长时间尺度上表现出整体随机行为。通过利用系统中的自推进组件,可以获得巨大的收益。使用外部磁场证明了对过氧化氢溶液中磁性Janus粒子运动的控制。磁性Janus粒子使自己的赤道平面平行于所施加的磁场,并且运动方向垂直于该磁场。与不存在磁场的情况相比,定向运动具有更明显的首选方向,并且已验证了施加的磁场可以控制方向,而不影响粒子运动的速度。各向异性粒子是组装复杂结构的独特构造块结构。具有链烷硫醇的表面官能化Janus颗粒吸附在液-气和液-液界面处,形成单层,金属半球指向同一方向。通过更改液体油相,可以控制Janus颗粒的方向,这为选择性地改变任一相中的表面提供了机会。在界面处沿相同方向的优先取向允许Janus颗粒直接转移,而所需的面保持为“面朝下”或“面朝上”的配置。还寻求外部干预磁场来指导磁性Janus粒子的组装。在存在均匀磁场的情况下,Janus磁性颗粒形成交错的链结构,其链的方向平行于外加磁场的方向。这些链结构由于溶剂蒸发过程中的毛细作用力而被破坏。但是,在溶液干燥后,通过向溶液中添加碳酸铵,可以将这些软结构成功地锁定在适当的位置,这为实现用于制造光子晶体和光子器件的2D或3D超结构提供了一种有希望的方法。

著录项

  • 作者

    Ye, Shengrong.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号