首页> 外文学位 >Toward Sustainable Water Treatment: Use of Biomaterials in Water Purification.
【24h】

Toward Sustainable Water Treatment: Use of Biomaterials in Water Purification.

机译:迈向可持续水处理:在水净化中使用生物材料。

获取原文
获取原文并翻译 | 示例

摘要

Climate change, demographic and land-use changes, urbanization, and consumption are interconnected global stressors that affect the quality, quantity, and availability of water. Demand for clean water continues to grow rapidly. As we seek to develop sustainable water systems, we must also consider the life cycle of materials these systems depend upon. Understanding how renewable, non-toxic, biodegradable materials can be used to provide safe, high quality water will enhance the sustainability of water treatment systems, making them more versatile and robust.;Over 120 million people in India and Bangladesh are exposed to toxic levels of arsenic in their drinking water because of a geogenic arsenic contamination of the groundwater in this region. As community scale infrastructure for water treatment is not likely in the near future, point-of-use technologies, most relying on adsorption, have been advocated for arsenic removal. Despite promising lab results for many of these technologies, none has adequately demonstrated long-term effectiveness and sustainability in the field.;Arsenic in groundwater primarily exists as arsenite (As(III)) and arsenate (As(V)). Arsenite is up to 60 times more toxic than arsenate. Because arsenite is uncharged at environmentally relevant pH, it is also more difficult to remove than arsenate, which is negatively charged at environmentally relevant pH. Arsenic removal technologies that rely on ion exchange require a pre-oxidation step, converting all arsenic to arsenate, to achieve total arsenic removal.;This research has pursued targeted design of biomaterials for arsenic sorption, incorporating green design principles throughout. The result is a novel arsenic sorbent with unique composition and functionality -- TiO2-impregnated chitosan bead (TICB). TICB is composed of TiO 2, a nanopowder ubiquitous in consumer products, and chitosan, a renewable, biodegradable biopolymer. Chitosan is the deacetylated form of chitin, the second most abundant biopolymer in the biosphere, and is produced as a waste byproduct in the shellfish processing industry. Chitosan is an attractive material for water treatment because, in aqueous solution, it forms hydrogels that can interact with dissolved materials, including arsenic, without dissolution.;TICB can perform simultaneous sorption and oxidation and has demonstrated the ability to 1) remove arsenate, 2) remove arsenite, and 3) oxidize arsenite to arsenate in the presence of UV light, including sunlight. The removal capacity of TICB is equivalent to the removal achieved by the mass of TiO2 nanopowder impregnated in the chitosan matrix, regardless of bead diameter. However, unlike TiO2 nanopowder, TICB self-separates according to density, obviating the need for post-treatment filtration, and resulting in energy and cost savings.;The mechanism of TICB sorption has been characterized, whereby the TiO 2 within the bead forms bidentate, binuclear chemical complexes with the arsenic oxyanions. A model to predict TICB capacity, based on TiO 2 loading and solution pH, is presented for arsenite, arsenate, and total arsenic in the presence of UV light. The rate of removal is increased with reductions in bead size and with exposure to UV light. Phosphate is found to be a direct competitor with arsenate for adsorption sites on TICB, but other relevant common background groundwater ions do not compete with arsenate for adsorption sites. TICB can be regenerated with weak NaOH and maintain full adsorption capacity for at least three adsorption/desorption cycles.
机译:气候变化,人口和土地利用的变化,城市化和消费是相互联系的全球压力源,它们影响水的质量,数量和可用性。对清洁水的需求继续快速增长。在寻求开发可持续水系统时,我们还必须考虑这些系统所依赖的材料的生命周期。了解如何使用可再生,无毒,可生物降解的材料来提供安全,高质量的水,将增强水处理系统的可持续性,使其更加通用和耐用。印度和孟加拉国超过1.2亿人面临有毒水平由于该地区地下水的地质砷污染,导致饮用水中的砷含量升高。由于在不久的将来不太可能实现社区规模的水处理基础设施,因此提倡使用最依赖吸附的使用点技术来去除砷。尽管对这些技术中的许多技术都取得了可喜的实验室结果,但没有一个方法能充分证明该领域的长期有效性和可持续性。地下水中的砷主要以砷酸盐(As(III))和砷酸盐(As(V))的形式存在。砷的毒性比砷高60倍。由于亚砷酸盐在与环境有关的pH值下不带电荷,因此与在环境有关的pH下带负电荷的砷酸盐相比,除砷更困难。依靠离子交换的除砷技术需要一个预氧化步骤,即将所有砷转化为砷,以实现全部除砷。这项研究致力于针对性地设计生物材料进行砷吸附,并结合了绿色设计原理。结果是一种具有独特组成和功能的新型砷吸附剂-TiO2浸渍的壳聚糖微珠(TICB)。 TICB由消费类产品中普遍存在的纳米粉TiO 2和可再生,可生物降解的生物聚合物壳聚糖组成。壳聚糖是几丁质的脱乙酰基形式,几丁质是生物圈中第二大最丰富的生物聚合物,在贝类加工工业中作为废副产品生产。壳聚糖是一种有吸引力的水处理材料,因为它在水溶液中会形成可与包括砷在内的溶解物质相互作用而不会溶解的水凝胶。; TICB可以同时进行吸附和氧化作用,并已证明具有以下能力:1)去除砷酸盐,2 )除去亚砷酸盐,并3)在紫外线(包括阳光)下将亚砷酸盐氧化成砷。 TICB的去除能力等同于通过浸渍在壳聚糖基质中的TiO2纳米粉的质量实现的去除,而不管珠的直径如何。但是,与TiO2纳米粉不同,TICB可根据密度自分离,从而无需进行后处理过滤,从而节省了能源和成本。TICB的吸附机理已得到表征,珠粒中的TiO 2形成了双齿,与砷含氧阴离子形成双核化学络合物。提出了一种基于TiO 2含量和溶液pH值来预测TICB容量的模型,该模型可在存在紫外线的情况下对亚砷酸盐,砷酸盐和总砷进行预测。随着珠粒尺寸的减小和暴露于紫外线下,去除速率增加。发现磷酸盐是砷与TICB上吸附位点的直接竞争者,但其他相关的常见背景地下水离子不会与砷竞争吸附位。 TICB可以用弱NaOH再生,并在至少三个吸附/解吸循环中保持完全的吸附能力。

著录项

  • 作者

    Miller, Sarah Maureen.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号