首页> 外文学位 >Design, fabrication, characterization and analysis of an efficient germanium: Silicon solar cell for a multi-junction solar cell system.
【24h】

Design, fabrication, characterization and analysis of an efficient germanium: Silicon solar cell for a multi-junction solar cell system.

机译:高效锗的设计,制造,表征和分析:用于多结太阳能电池系统的硅太阳能电池。

获取原文
获取原文并翻译 | 示例

摘要

The design, fabrication, characterization and analysis of low band gap germanium silicon (Ge:Si) solar cells for operation with a silicon solar cell in a multi-junction concentrator system is the objective of this thesis. This is the first report of high Ge concentration Ge:Si solar cells on Si. We achieved a Ge:Si solar cell with an efficiency of 1.37%, an open circuit voltage (Voc) of 267mV and a fill factor (FF) of 63% below Si at 30 suns. This solar cell has a short circuit current density (Jsc) of 7.91mA/cm2 below Si at one sun after correcting for the application of an anti-reflection (AR) coating.;Optical properties of Ge:Si make it a good candidate to absorb long wavelength photons which are transmitted through high or medium band gap materials, like Si. Its spectral sensitivity can reach up to 1800 nm. First principles were used to design Ge:Si solar cells and predict their photovoltaic properties below Si. Simulations show that 88% Ge concentration Ge:Si solar cells can achieve 2.3% efficiency below Si at 30 suns.;High quality Ge:Si layers with high Ge concentration (above 85%) were achieved on Si substrates using reduced pressure chemical vapor deposition (RPCVD) technology. Scanning electron microscopy (SEM) was used to analyze the surface property. Secondary ion mass spectrometry (SIMS) and spreading resistance profiling (SRP) were used to monitor the germanium, impurity, and dopant concentrations.;First generation Ge:Si solar cells had P type 92%Ge concentration Ge:Si absorbers grown on Si. To minimize the misfit and threading dislocations, Ge:Si graded layers were grown on Si before the growth of high Ge concentration Ge:Si. N type Si caps were grown on top of the P type Ge:Si absorbers to form the PN junction and passivate the surface. The first generation Ge:Si solar cell achieved an efficiency of 0.57% below Si at 30 suns. Through analyzing the IV (current voltage) and QE (quantum efficiency) of fabricated Ge:Si solar cells, performance improvement plans for FF were designed using the predictive models. These led to a third generation Ge:Si solar cell. A maximum efficiency of 0.79% was obtained at 88%Ge concentration below Si at 30 suns.;Light trapping can increase the effective path length of photons in the solar cell. In this work, two light trapping configurations were considered. These configurations have texturing, AR coatings and back reflectors. Photon counting and ray tracing were used to evaluate their performance for Ge:Si solar cells below Si. Model indicates that the optical path length of photons with the energy near the band gap of 88% Ge concentration Ge:Si can reach 19 to 21 times that of the thickness of the Ge:Si absorber for two light trapping configurations. The fourth generation Ge:Si solar cell with the Al back reflector achieved 5.72mA/cm2 Jsc below Si at one sun which is 60% higher than that of the third generation cell. Furthermore, the fifth generation Ge:Si solar cell with a SiO2/Al reflector achieved a 7.91mA/cm2 Jsc below Si at one sun which demonstrates that the SiO2/Al reflector has better reflection than the Al mirror in our Ge:Si solar cells. The effective path length of photons in the fifth generation cell reached 17 times that of the thickness of the Ge:Si absorber. After increasing the Jsc of 88%Ge content Ge:Si solar cells by applying the light trapping, we achieved an efficiency of 1.3% below Si at 30 suns. This efficiency is 60% of the theoretical maximum. Moreover, the efficiency calculated by the product of best achieved Voc (373mV), Jsc (7.91mA/cm2) and FF (66%) indicates that 88%Ge content Ge:Si solar cell can reach 1.9% efficiency below Si at 30 suns which is 80% of the theoretical maximum.;This work develops the design rules that demonstrate the pathway to achieve 2.3% efficient Ge:Si solar cells below Si in a multi-junction concentrator system.
机译:本文的目的是在多结聚光系统中与硅太阳能电池一起工作的低带隙锗硅(Ge:Si)太阳能电池的设计,制造,表征和分析。这是硅上高Ge浓度的Ge:Si太阳能电池的首次报道。我们在30个太阳下获得的Ge:Si太阳能电池的效率为1.37%,开路电压(Voc)为267mV,填充因子(FF)比Si低63%。经过校正防反射涂层的应用,该太阳能电池在一个太阳下具有低于Si的7.91mA / cm2的短路电流密度(Jsc)。Ge:Si的光学性质使其非常适合用作吸收通过高或中带隙材料(例如Si)传输的长波长光子。它的光谱灵敏度可以达到1800 nm。第一原理用于设计Ge:Si太阳能电池并预测其在Si以下的光伏性能。仿真表明,在30个太阳下,Ge浓度为88%的Ge:Si太阳能电池可比Si效率低2.3%.;通过减压化学气相沉积法在Si衬底上获得了高质量的Ge浓度高(85%以上)的Ge:Si层(RPCVD)技术。使用扫描电子显微镜(SEM)分析表面性质。二次离子质谱(SIMS)和扩展电阻分布图(SRP)用于监测锗,杂质和掺杂剂的浓度。第一代Ge:Si太阳能电池具有在Si上生长的P型92%Ge浓度的Ge:Si吸收剂。为了最小化错配和螺纹位错,在生长高Ge浓度的Ge:Si之前,先在Si上生长Ge:Si梯度层。在P型Ge:Si吸收剂的顶部生长N型硅盖,以形成PN结并钝化表面。在30个太阳下,第一代Ge:Si太阳能电池的效率比Si低0.57%。通过分析制造的Ge:Si太阳能电池的IV(电流电压)和QE(量子效率),使用预测模型设计了FF的性能改进计划。这些导致了第三代Ge:Si太阳能电池。在30个太阳下,低于Si的88%Ge浓度时,最高效率为0.79%;光捕获可以增加太阳能电池中光子的有效路径长度。在这项工作中,考虑了两种光捕获配置。这些配置具有纹理,增透膜和后反射器。光子计数和射线追踪被用来评估它们对低于Si的Ge:Si太阳能电池的性能。模型表明,在两种光阱结构中,具有接近88%Ge浓度Ge:Si的带隙的能量的光子的光程长度可以达到Ge:Si吸收体厚度的19到21倍。带有Al背反射器的第四代Ge:Si太阳能电池在一个太阳下比Si低5.72mA / cm2 Jsc,比第三代电池高60%。此外,具有SiO2 / Al反射器的第五代Ge:Si太阳能电池在一个太阳下比Si低7.91mA / cm2 Jsc,这表明我们的Ge:Si太阳能电池中SiO2 / Al反射器比Al镜具有更好的反射率。第五代电池中光子的有效路径长度达到了Ge:Si吸收层厚度的17倍。通过应用光阱提高了88%Ge含量的Ge:Si太阳能电池的Jsc,在30个太阳下,我们的效率比Si低1.3%。该效率是理论最大值的60%。而且,通过最佳实现的Voc(373mV),Jsc(7.91mA / cm2)和FF(66%)乘积计算出的效率表明,在30个太阳下,88%Ge含量的Ge:Si太阳能电池可以比Si达到1.9%的效率。这是理论最大值的80%。;这项工作制定了设计规则,以证明在多结聚光器系统中实现低于Si的2.3%效率的Ge:Si太阳能电池的途径。

著录项

  • 作者

    Wang, Yi.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Alternative Energy.;Engineering General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号