首页> 外文学位 >Experimental investigation of thermal conductivity of nanofluids.
【24h】

Experimental investigation of thermal conductivity of nanofluids.

机译:纳米流体导热系数的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Nanofluids are simply the suspensions of nanometer sized ( 100 nm) particles in various fluids. Because nanofluids have very high thermal conductivities compared to conventional base fluids, these fluids can find a wide range of applications such as automotive coolants, cooling advanced electronic packages, coolants in miniature heat exchangers etc. Various studies are being conducted to understand and utilize the multifaceted properties of nanofluids.;The purpose of this experimental study is to evaluate the effects of several important parameters, such as particle species, surface charge, concentration, preparation techniques, and base fluids on thermal transport capability of nanoparticle suspensions (nanofluids). The surface charge was varied by changing the pH value of the fluids. The alumina (Al2O3) and copper oxide (CuO) nanoparticles were dispersed in deionized (DI) water and ethylene glycol (EG), respectively. The nanofluids were prepared using both bath-type and probe sonicator under different power inputs. The experimental results were compared with the available experimental data as well as the predicted values obtained from Maxwell effective medium theory.;It was found that that ethylene glycol is more suitable for nanofluids applications than DI water in terms of thermal conductivity improvement (up to 12% at 5% volume fraction loading) and stability of nanofluids. Surface charge can effectively improve the dispersion of nanoparticles by reducing the (agglomeration) particle size in base fluids. A nanofluid with high surface charge (low pH) has a higher thermal conductivity for a similar particle concentration. Sonication method and power have significant impact on the thermal conductivity enhancement. The collected results suggest that the key to the improvement of thermal conductivity of nanofluids is a uniform dispersion of nanoscale particles in a fluid.
机译:纳米流体仅仅是纳米尺寸(<100 nm)颗粒在各种流体中的悬浮液。由于与常规基础流体相比,纳米流体具有很高的导热率,因此这些流体可以找到广泛的应用,例如汽车冷却液,冷却高级电子封装,微型热交换器中的冷却液等。正在进行各种研究,以了解和利用多方面的特性。本实验研究的目的是评估几个重要参数的影响,例如颗粒种类,表面电荷,浓度,制备技术和基础流体对纳米颗粒悬浮液(纳米流体)热传递能力的影响。通过改变流体的pH值来改变表面电荷。将氧化铝(Al2O3)和氧化铜(CuO)纳米颗粒分别分散在去离子(DI)水和乙二醇(EG)中。使用浴型和探针超声仪在不同的功率输入下制备纳米流体。将实验结果与可用的实验数据以及从麦克斯韦有效介质理论获得的预测值进行了比较;发现乙二醇在导热系数方面,比去离子水更适合用于纳米流体应用(高达12 5%(体积分数为5%时)和纳米流体的稳定性。表面电荷可通过减少基础流体中的(凝聚)粒径来有效地改善纳米粒子的分散性。对于相似的颗粒浓度,具有高表面电荷(低pH)的纳米流体具有较高的导热性。超声处理方法和功率对导热系数的提高有重要影响。收集的结果表明,提高纳米流体导热性的关键是纳米颗粒在流体中的均匀分散。

著录项

  • 作者

    Gowda, Raghu.;

  • 作者单位

    University of Massachusetts Lowell.;

  • 授予单位 University of Massachusetts Lowell.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2010
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号