首页> 外文学位 >First Principles Quantitative Modeling of Molecular Devices.
【24h】

First Principles Quantitative Modeling of Molecular Devices.

机译:分子装置的第一原理定量建模。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we report theoretical investigations of nonlinear and nonequilibrium quantum electronic transport properties of molecular transport junctions from atomistic first principles. The aim is to seek not only qualitative but also quantitative understanding of the corresponding experimental data. At present, the challenges to quantitative theoretical work in molecular electronics include two most important questions: (i) what is the proper atomic model for the experimental devices? (ii) how to accurately determine quantum transport properties without any phenomenological parameters? Our research is centered on these questions. We have systematically calculated atomic structures of the molecular transport junctions by performing total energy structural relaxation using density functional theory (DFT). Our quantum transport calculations were carried out by implementing DFT within the framework of Keldysh non-equilibrium Green's functions (NEGF). The calculated data are directly compared with the corresponding experimental measurements. Our general conclusion is that quantitative comparison with experimental data can be made if the device contacts are correctly determined.;We investigated the role of contact formation and its resulting structures to quantum transport in several molecular wires and show that interface contacts critically control charge conduction. It was found, for Au/BDT/Au junctions, the H atom in -SH groups energetically prefers to be non-dissociative after the contact formation, which was supported by comparison between computed and measured break-down forces and bonding energies. The H-non-dissociated (HND) junctions give equilibrium conductances from0.054G0 (equilibrium structure) to 0.020G0 (stretched structure) which is within a factor of 2-5 of the measured data. On the other hand, for all H-dissociated contact structures - which were the assumed structures in the literature, the conductance is at least more than an order of magnitude larger that the experimental value. The HND-model significantly narrows down the theory/experiment discrepancy. Finally, a by-product of this work is a comprehensive pseudopotential and atomic orbital basis set database that has been carefully calibrated and can be used by the DFT community at large.;We calculated properties of nonequilibrium spin injection from Ni contacts to octane-thiolate films which form a molecular spintronic system. The first principles results allow us to establish a clear physical picture of how spins are injected from the Ni contacts through the Ni-molecule linkage to the molecule, why tunnel magnetoresistance is rapidly reduced by the applied bias in an asymmetric manner, and to what extent ab initio transport theory can make quantitative comparisons to the corresponding experimental data. We found that extremely careful sampling of the two-dimensional Brillouin zone of the Ni surface is crucial for accurate results in such a spintronic system.
机译:在本文中,我们从原子第一原理报道了分子传输结的非线性和非平衡量子电子传输性质的理论研究。目的不仅是寻求对相应实验数据的定性而且是定量的理解。目前,分子电子学中定量理论工作面临的挑战包括两个最重要的问题:(i)实验装置的正确原子模型是什么? (ii)如何在没有任何现象学参数的情况下准确确定量子传输性质?我们的研究集中在这些问题上。通过使用密度泛函理论(DFT)执行总能量结构弛豫,我们已经系统地计算了分子传输结的原子结构。我们的量子传输计算是通过在Keldysh非平衡格林函数(NEGF)框架内实施DFT进行的。将计算出的数据直接与相应的实验测量值进行比较。我们的一般结论是,如果正确确定器件的触点,则可以与实验数据进行定量比较。;我们研究了触点形成的作用及其在多条分子线中对量子传输的影响,并表明界面触点可严格控制电荷传导。已发现,对于Au / BDT / Au结,-SH基团中的H原子在形成接触后在能量上倾向于非解离,这是通过计算和测量的分解力与键能之间的比较来支持的。 H-非离解(HND)结的平衡电导从0.054G0(平衡结构)到0.020G0(拉伸结构),在测量数据的2-5倍之内。另一方面,对于所有H离解的接触结构-文献中假定的结构,电导至少比实验值大一个数量级。 HND模型显着缩小了理论/实验差异。最后,这项工作的副产品是经过全面校准的全面的伪势和原子轨道基础集数据库,可供DFT社区广泛使用。;我们计算了从Ni触点到辛烷硫醇盐的非平衡自旋注入的性质。形成分子自旋电子系统的薄膜。第一个原理结果使我们能够清晰地了解自旋是如何通过Ni分子键从Ni触点注入到分子上的,以及为什么施加的偏压以不对称的方式迅速降低了隧道磁阻,以及程度如何从头算运输理论可以对相应的实验数据进行定量比较。我们发现,在这种自旋电子系统中,对镍表面的二维布里渊区进行极为仔细的采样对于获得准确结果至关重要。

著录项

  • 作者

    Ning, Zhanyu.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Physics Molecular.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号