首页> 外文学位 >Aberrant transmembrane helix-helix interactions as a biophysical cause of human disease.
【24h】

Aberrant transmembrane helix-helix interactions as a biophysical cause of human disease.

机译:跨膜螺旋-螺旋相互作用异常是人类疾病的生物物理原因。

获取原文
获取原文并翻译 | 示例

摘要

Mutations that alter transmembrane (TM) helix-helix interactions can result in disease by compromising protein structure/function. Recent reports showed that TM-embedded polar residues play powerful roles in TM domain (TMD) folding by forming interhelical H-bonds (reviewed in (Partridge et al., 2002b)). Thus, mutations involving these species could result in disease by disrupting the pattern of native electrostatic links. To explore this possibility, we performed a statistical analysis of the phenotypic missense mutations listed in the human gene mutation database. We found that both polar to non-polar and non-polar to polar mutations are more often associated with disease in TMDs compared to soluble domains. This suggests that, in TMDs, both the disruption of native structure-stabilizing H-bonds and the formation of non-native structure-destabilizing H-bonds are frequent causes of human disease. To experimentally investigate these concepts, we developed a peptide-based system for the study of TM helix-helix interactions. This 'Lys-tagged' approach involves the addition of several Lys residues to both the N- and C-termini of a single TM helix. The resulting species are water-soluble, a property that greatly facilitates their purification and characterization. Furthermore, such peptides retain the ability to insert into membrane-mimetic environments to assume their native-like secondary and tertiary structures. Using such peptides, we showed that when applied to TM4 from the cystic fibrosis conductance regulator, the apolar to polar phenotypic mutation V232D induces the formation of multiple non-covalent oligomeric states through the formation of an interhelical H-bonding network. The powerful effect of this mutation is context-specific, since randomized sequences containing the analogous interhelical H-bonding components could not form similar oligomeric assemblies. Studies on the TM helix from myelin protein zero (PO) and its phenotypic mutation show that an apolar to polar mutation can similarly disrupt native state oligomeric states through mechanisms not involving interhelical H-bonds. We demonstrate that the native P0-TM helix forms a tetrameric bundle and that the phenotypic mutation G163R prevents this assembly through steric clash interactions. The research presented suggests that the proper packing of TM helices is vital to protein function and that TM-embedded mutations involving polar residues manifest their deleterious effects through a variety of mechanisms.
机译:改变跨膜(TM)螺旋-螺旋相互作用的突变可通过损害蛋白质结构/功能而导致疾病。最近的报道表明,嵌入TM的极性残基通过形成螺旋间的氢键在TM域(TMD)折叠中发挥重要作用(综述见(Partridge等,2002b))。因此,涉及这些物种的突变可通过破坏天然静电连接的模式而导致疾病。为了探索这种可能性,我们对人类基因突变数据库中列出的表型错义突变进行了统计分析。我们发现,与可溶性结构域相比,极性至非极性和非极性至极性突变都更常与TMD中的疾病相关。这表明,在TMD中,破坏天然结构稳定的H键和形成非天然结构不稳定的H键都是人类疾病的常见原因。为了实验研究这些概念,我们开发了一种基于肽的系统来研究TM螺旋-螺旋相互作用。这种“ Lys标记”方法涉及在单个TM螺旋的N和C末端同时添加多个Lys残基。所得物质是水溶性的,该性质极大地促进了其纯化和表征。此外,这些肽保留插入模拟膜环境中以呈现其天然样二级和三级结构的能力。使用此类肽,我们显示当从囊性纤维化电导调节剂应用于TM4时,非极性至极性表型突变V232D通过形成螺旋间H键网络诱导多个非共价寡聚体的形成。该突变的强大作用是特定于上下文的,因为包含类似螺旋间H键组分的随机序列无法形成相似的寡聚体。对髓磷脂蛋白零(PO)的TM螺旋及其表型突变的研究表明,无极性至极性突变可以通过不涉及螺旋间H键的机制类似地破坏天然状态的寡聚状态。我们证明了天然P0-TM螺旋形成四聚体束,并且表型突变G163R通过空间碰撞相互作用阻止了该组装。提出的研究表明,TM螺旋的正确包装对于蛋白质功能至关重要,涉及极性残基的TM嵌入突变通过多种机制表现出有害作用。

著录项

  • 作者

    Partridge, Anthony William.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号