首页> 外文学位 >Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates.
【24h】

Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates.

机译:胶原模拟肽及其热响应性聚合物缀合物的构象组装和生物学特性。

获取原文
获取原文并翻译 | 示例

摘要

Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures.;To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy.;Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the collapse of the thermo-responsive polymer upon heating (to above the LCST) leads to the assembly of these hybrid materials as micrometer sized spheres. At 75 °C a morphological transformation from spheres to fibrils were observed. These studies provided unique perspectives about the impact of stimuli-responsive polymers and the triple-helix forming peptides on each other; and how temperature as a stimulus can be employed to sequentially guide the assembly. The development of self-assembling hybrid materials with multiple sensitivities to temperature would offer useful opportunities in the design of stimuli-responsive nano-materials.;The CLP-Cys peptide sequence has been designed to incorporate biologically relevant amino acid triplets (GEKGER) and its positive impact was seen via recruitment of human mesenchymal stem cells (hMSCs) for adhesion, spreading and proliferation on CLP-Cys functionalized glass and hyaluronic acid based hydrogel surfaces. Therefore, the prospects of these materials in biomedical applications including wound healing and tissue engineering are promising.
机译:胶原蛋白是在人体组织和器官中发现的最丰富的蛋白质之一,具有结构完整性,机械强度和多种生物学功能。人体内部不稳定的胶原蛋白会导致各种退行性疾病(例如骨关节炎)和衰老。这继续激励合成肽和生物合成多肽的设计,以在三螺旋结构和稳定性,更高阶组装的潜力以及生物学特性方面紧密模拟天然胶原。但是,从头胶原蛋白的广泛应用部分受限于在形成稳定的三螺旋结构时对羟基脯氨酸的需求。为了满足这一持续的需求,无羟基脯氨酸,热稳定的胶原蛋白模拟肽(CLP-通过并入静电稳定的氨基酸三联体来合理地设计Cys)。 CLP-Cys通过固相肽合成法合成。三元螺旋结构的形成和稳定性通过圆二色性(CD)实验表明,并通过差示扫描量热法(DSC)结果得到证实。 CLP-Cys还可以自组装为纳米棒和微原纤维,这通过动态光散射和透射电子显微镜的结合得到证明。鉴于其高的热稳定性和其高阶组装的倾向,CLP-Cys的应用更加广泛。在两端用热响应性聚合物聚二甲基乙二醇甲基醚甲基丙烯酸酯(PDEGMEMA)进行官能化,以合成生物杂化三嵌段共聚物。 CD结果表明,在三嵌段杂化背景下,三螺旋结构得以保留,热展开得以维持,并且螺旋向线圈的转变是可逆的。与亲水性胶原肽结构域缀合后,PDEGMEMA均聚物的LCST(26°C)升高(至35°C)。此外,静态光散射,Cryo-SEM,TEM和共聚焦显微镜的结合表明,加热时(在LCST之上)热响应性聚合物的崩解导致这些杂化材料组装成微米尺寸的球体。在75°C时,观察到了从球形到原纤维的形态转变。这些研究提供了关于刺激反应性聚合物和三螺旋形成肽相互影响的独特观点。以及如何使用温度作为刺激来顺序引导组装。对温度具有多种敏感性的自组装杂化材料的开发将为设计刺激响应性纳米材料提供有用的机会。CLP-Cys肽序列已被设计为结合生物学相关的氨基酸三联体(GEKGER)及其通过募集人间充质干细胞(hMSCs)在CLP-Cys功能化玻璃和透明质酸基水凝胶表面上的粘附,扩散和增殖,看到了积极的影响。因此,这些材料在包括伤口愈合和组织工程在内的生物医学应用中的前景是广阔的。

著录项

  • 作者

    Krishna, Ohm Divyam.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry Biochemistry.;Chemistry Polymer.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号