首页> 外文学位 >Sensitivity analysis of chemical mechanisms based on field data.
【24h】

Sensitivity analysis of chemical mechanisms based on field data.

机译:基于现场数据的化学机理敏感性分析。

获取原文
获取原文并翻译 | 示例

摘要

Ozone air pollution damages the health of humans and ecosystems; it has been the focus of decades of research and regulatory action. The atmospheric processes causing ozone are complex and contain hundreds of chemical reactions, including reactions of reactive gases hydroxyl (OH) and hydroperoxyl (HO 2). Chemical mechanisms describe these complex chemical reactions mathematically and hence are essential for air quality modeling.;In this study, as a first step toward improving model performance, sensitivity analysis was applied to study the effect of the uncertainties in all model constraints and inputs on the uncertainties in OH, HO2, and ozone production predictions. Uncertainties in hundreds of model parameters were assigned in a reasonable manner for measured amounts of model constraints, photolysis rates and kinetic rates, and the product yields, typically ranging from about 10% to a factor of two. 28,500 Monte Carlo runs were made with given sets of different initial conditions based on the measurements of this field campaign.;The model-measurement discrepancies were examined based on over 100 base cases from 16 days of field data. The relative uncertainty (+/-1sigma) exhibits a persistent diurnal pattern: high uncertainty at morning rush hour (about 35%), low uncertainty in the afternoon (about 20%), and intermediate uncertainty at night (about 25%). The sources of model uncertainty are dominated by the uncertainties in chemical schemes (30-60% from kinetic rates and 10-40% from product yields), while the uncertainties in measurements are less influential. The most important model parameters are generally associated with the amounts of monoterpenes and acetaldehyde, the photolysis of HONO and HCHO (&;The effect of uncertainties of model parameters on the prediction of whether ozone production is limited by nitrogen oxides (NOx) or by volatile organic chemicals (VOCs) was examined for over 30 transition cases between NOx-sensitive and VOCsensitive regimes. The impacts of the most important parameters on ozone production limitations by NO x or VOCs were quantified. The greater values of the NO amount, the reaction rates of NO2 + OH, NO + HO2 and ISOP (isoprene peroxy radicals) + NO rather more VOC-sensitivity, while the higher values of higher aldehydes and nonoterpenes, and kinetic rates associated with reactions of OH with aldehydes and xylenes, internal alkenes with O3, and ISOP with HO2 rather more NOx-sensitivity of ozone under the studied conditions.;The mechanism-mechanism differences in model predictions were examined based on about 30 cases from four typical days of data. The difference in kinetic rates is the major source (averaged 53-91%) for nighttime when the mechanism-mechanism discrepancy is larger, while the difference in product yields are more important (averaged 49%) during daytime when the discrepancy is smaller. The major contributors were revealed to be associated with the reactions of internal alkenes with O3, alkenes/xylenes/ aldehydes with OH, and organic peroxy radicals with HO2 or NO.;Model sensitivity of OH and HO2 was also examined by varying each model parameter by a factor of three one-at-a-time to test the model response if the uncertainties in some model parameters were greatly underestimated. Thirty-one model parameters were considered influential with the corresponding percentage of HOx variation greater than 10%. For most of these important model parameters, both small and large perturbations of their constrained values lead to significant variations of OH and HO2. However, some model parameters were found influential only when larger variations were assumed, but not influential within their assigned uncertainties. Such model parameters included the amounts of ozone and several internal alkenes, and product yields of peroxy radicals generated from reactions of HC3 with OH and RO2 with NO.;The sensitivity analysis applied in this study helps evaluate model uncertainty comprehensively and improve model performance by quantifying the uncertainty sources from the model parameters associated with chemical mechanisms. These results can then be used to improve chemical schemes to better represent the complex atmospheric processes and to achieve better model-measurement agreement eventually. With a better understanding of these complex atmospheric processes, more effective regulatory action can then be taken to reduce the ozone air pollution and improve the air quality.
机译:臭氧空气污染损害人类和生态系统的健康;数十年来,它一直是研究和监管行动的重点。导致臭氧的大气过程很复杂,并且包含数百种化学反应,包括反应性气体羟基(OH)和氢过氧基(HO 2)的反应。化学机制用数学方法描述了这些复杂的化学反应,因此对于空气质量建模至关重要。在本研究中,作为提高模型性能的第一步,使用灵敏度分析来研究所有模型约束和输入中不确定性对空气质量的影响。 OH,HO2和臭氧产量预测的不确定性。以合理的方式分配了数百个模型参数的不确定性,用于模型约束,光解速率和动力学速率以及产物收率的测量值,通常在约10%到2的范围内。根据该野战活动的测量结果,在给定的不同初始条件下进行了28,500次蒙特卡洛试验。;模型测量的差异是基于16天的野外数据,基于100多个基本案例进行了检验。相对不确定性(+/- 1sigma)表现出持续的昼夜模式:早上高峰时间的不确定性较高(大约35%),下午的不确定性较低(大约20%),晚上中等不确定性(大约25%)。模型不确定性的来源主要由化学方案的不确定性决定(动力学速率的不确定性为30-60%,产品产率的不确定性为10-40%),而测量不确定性的影响较小。最重要的模型参数通常与单萜和乙醛的量,HONO和HCHO的光解有关(&;模型参数的不确定性对预测臭氧产量是否受氮氧化物(NOx)或挥发性限制的影响对有机化学物质(VOCs)进行了30多个NOx敏感和VOC敏感状态之间的过渡过程研究,量化了最重要的参数对NOx或VOCs限制臭氧产生的影响,NO值越大,反应速度越快NO2 + OH,NO + HO2和ISOP(异戊二烯过氧自由基)+ NO的含量更高,而更高的醛和壬基萜烯的值更高,且动力学速率与OH与醛和二甲苯,内部烯烃与O3的反应有关;而在研究条件下,ISOP则具有较高的臭氧NOx敏感性。;基于abou检验了模型预测中的机理差异来自四个典型日的数据中的30个案例。当机理机理差异较大时,夜间运动速率差异是主要来源(平均53-91%),而白天差异较小时,产品产量差异更为重要(平均49%)。发现主要的贡献者与内部烯烃与O3的反应,烯烃/二甲苯/醛与OH的反应以及有机过氧自由基与HO2或NO的反应有关;还通过改变每个模型参数来检查OH和HO2的模型敏感性。如果某些模型参数的不确定性被大大低估,则一次用三个因素来测试模型响应。有31个模型参数被认为具有影响力,相应的HOx变化百分比大于10%。对于这些重要的模型参数中的大多数,其约束值的大小扰动都会导致OH和HO2的显着变化。但是,仅在假定较大变化的情况下,才发现某些模型参数有影响,而在其分配的不确定性内则没有影响。此类模型参数包括臭氧和几种内部烯烃的量以及HC3与OH和RO2与NO的反应产生的过氧自由基的产物收率;本研究中使用的灵敏度分析有助于通过定量分析来全面评估模型不确定性并改善模型性能来自与化学机理相关的模型参数的不确定性来源。然后,这些结果可用于改进化学方案,以更好地表示复杂的大气过程,并最终获得更好的模型测量协议。在对这些复杂的大气过程有了更好的了解之后,便可以采取更有效的监管措施来减少臭氧空气污染并改善空气质量。

著录项

  • 作者

    Chen, Shuang.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Atmospheric Chemistry.;Meteorology.;Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号