首页> 外文学位 >The effects of buoyancy on smoldering combustion and its transition to flame.
【24h】

The effects of buoyancy on smoldering combustion and its transition to flame.

机译:浮力对阴燃和向火焰过渡的影响。

获取原文
获取原文并翻译 | 示例

摘要

Experiments have been conducted to study the effect of buoyancy on one-dimensional opposed flow and forward flow smoldering combustion and on the transition from smoldering to flaming in a porous combustible material, flexible open-celled polyurethane foam. The experiments are part of the Microgravity Smoldering Combustion (MSC) project and the Smolder and Transition to Flaming (STAF) project, which are NASA funded programs to study smoldering combustion in a microgravity environment. Complementary studies are conducted here in normal gravity. In one-dimensional smoldering, a controlled airflow is forced through a cylindrical sample of polyurethane foam, which is ignited at one end of the cylinder. The smolder reaction propagates against the direction of airflow in the opposed configuration, and in the direction of the airflow in the forward configuration. In normal-gravity testing there is an additional upward buoyant flow through the sample. Generally smolder takes place under oxygen-limited conditions, and the rate of propagation is therefore determined by the availability of oxidizer. In the opposed configuration, experiments indicate that the smolder propagation is determined by the total mass flux of oxidizer to the smolder reaction for an oxygen-limited regime of smolder combustion. The smolder velocity is seen to vary linearly from 0.10 mm/s to 0.25 mm/s with oxidizer mass flux in a range of oxidizer mass flux from 0 g-O2/m2s to 1.5 g-O2/m2s. For the present sample size, a critical mass flux of oxidizer is identified below which the smolder propagation is not possible. This critical mass flux is significantly lower in microgravity (0.3 g-O2/m2s) than in normal gravity (0.6 g-O2/m2s), due to the reduced heat losses in microgravity. A calculation of heat losses indicates that heat losses are 6--7 times higher in normal gravity than in microgravity due to buoyantly-induced convective cooling. In the forward flow configuration, two microgravity experiments are conducted at a forced oxidizer mass flux of 0.84 g-O2/m2s and 1.4 g-O2/m 2s, with two complementary normal gravity experiments. A comparison of normal and microgravity experiments reveals that in microgravity the absence of buoyantly-induced convective cooling leads to sustained char temperatures after the passage of the smolder front, while in normal gravity the char cools rapidly after the passage of the smolder front. At a forced oxidizer mass flux of 1.4 g-O2/m2s, microgravity char temperatures are up to 100°C higher than the corresponding normal gravity temperatures. The results show that smolder propagation and the transition to flaming can occur in relatively small fuel samples if the external conditions are appropriate. The results also indicate that transition to flaming occurs in the char left behind by the smolder reaction, and it has the characteristics of a gas-phase ignition induced by the smolder reaction, which acts as the source of both gaseous fuel and heat. (Abstract shortened by UMI.)
机译:已经进行了实验,以研究浮力对多孔可燃材料,柔性开孔聚氨酯泡沫中一维对流和正向阴燃燃烧以及从阴燃到燃烧过渡的影响。这些实验是“微重力闷烧燃烧”(MSC)项目以及“闷烧和过渡到火焰状燃烧”(STAF)项目的一部分,这些项目是NASA资助的研究微重力环境下闷烧燃烧的程序。此处在正常重力下进行补充研究。在一维闷烧中,迫使受控的气流通过聚氨酯泡沫的圆柱形样品,该样品在气缸的一端被点燃。阴燃反应在相反的构造中逆着气流的方向传播,而在向前的构造中逆着气流的方向传播。在法向重力测试中,有额外的向上浮力流过样品。通常闷烧发生在氧气受限的条件下,因此,扩散速率取决于氧化剂的可用性。在相反的配置中,实验表明,在氧气限制的阴燃燃烧条件下,阴燃的传播是由氧化剂到阴燃反应的总质量通量决定的。在氧化剂质量通量从0g-O 2 / m 2s到1.5g-O 2 / m 2s的范围内,随着氧化剂质量通量,闷烧速度从0.10mm / s线性变化至0.25mm / s。对于当前的样本量,确定了氧化剂的临界质量通量,在该通量以下,不可能发生阴燃扩散。由于降低了微重力的热损失,因此临界质量通量在微重力下(0.3 g-O2 / m2s)显着低于正常重力(0.6 g-O2 / m2s)。热损失的计算表明,由于浮力引起的对流冷却,在正常重力下的热损失比在微重力下高6--7倍。在正向流动配置中,在两个强制法氧化剂质量通量分别为0.84 g-O2 / m2s和1.4 g-O2 / m 2s的强制氧化剂质量通量下进行了两个微重力实验。对正常重力和微重力实验的比较发现,在微重力下,不存在浮力引起的对流冷却会导致闷烧锋经过后焦炭温度持续升高,而在正常重力下,焦炭会在闷燃锋经过后迅速冷却。在1.4 g-O2 / m2s的强制氧化剂质量通量下,微重力炭的温度比相应的正常重力温度高100℃。结果表明,如果外部条件合适,则在相对较小的燃料样品中会发生闷燃扩散和向火焰的过渡。该结果还表明,在由阴燃反应留下的炭中发生了向燃烧的转变,并且具有由阴燃反应引起的气相点火的特性,其既是气体燃料又是热量的来源。 (摘要由UMI缩短。)

著录项

  • 作者

    Bar-Ilan, Amnon Avishai.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 279 p.
  • 总页数 279
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号