首页> 外文学位 >Computer simulation of a hollow-fiber bioreactor: Heparan regulated growth factors-receptors binding and dissociation analysis.
【24h】

Computer simulation of a hollow-fiber bioreactor: Heparan regulated growth factors-receptors binding and dissociation analysis.

机译:中空纤维生物反应器的计算机模拟:乙酰肝素调节生长因子-受体结合和解离分析。

获取原文
获取原文并翻译 | 示例

摘要

This thesis demonstrates the use of numerical simulation in predicting the behavior of proteins in a flow environment.;A novel convection-diffusion-reaction computational model is first introduced to simulate fibroblast growth factor (FGF-2) binding to its receptor (FGFR) on cell surfaces and regulated by heparan sulfate proteoglycan (HSPG) under flow in a bioreactor. The model includes three parts: (1) the flow of medium using incompressible Navier-Stokes equations; (2) the mass transport of FGF-2 using convection-diffusion equations; and (3) the cell surface binding using chemical kinetics. The model consists of a set of coupled nonlinear partial differential equations (PDEs) for flow and mass transport, and a set of coupled nonlinear ordinary differential equations (ODEs) for binding kinetics. To handle pulsatile flow, several assumptions are made including neglecting the entrance effects and an approximate analytical solution for axial velocity within the fibers is obtained. To solve the time-dependent mass transport PDEs, the second order implicit Euler method by finite volume discretization is used. The binding kinetics ODEs are stiff and solved by an ODE solver (CVODE) using Newton's backward differencing formula. To obtain a reasonable accuracy of the biochemical reactions on cell surfaces, a uniform mesh is used. This basic model can be used to simulate any growth factor-receptor binding on cell surfaces on the wall of fibers in a bioreactor, simply by replacing binding kinetics ODEs.;Circulation is an important delivery method for natural and synthetic molecules, but microenvironment interactions, regulated by endothelial cells and critical to the molecule's fate, are difficult to interpret using traditional approaches. Growth factor capture under flow is analyzed and predicted using computer modeling mentioned above and a three-dimensional experimental approach that includes pertinent circulation characteristics such as pulsatile flow, competing binding interactions, and limited bioavailability. An understanding of the controlling features of this process is desired. The experimental module consists of a bioreactor with synthetic endothelial-lined hollow fibers under flow. The physical design of the system is incorporated into the model parameters. FGF-2 is used for both the experiments and simulations. The computational model is based on the flow and reactions within a single hollow fiber and is scaled linearly by the total number of fibers for comparison with experimental results. The model predicts, and experiments confirm, that removal of heparan sulfate (HS) from the system will result in a dramatic loss of binding by heparin-binding proteins, but not by proteins that do not bind heparin. The model further predicts a significant loss of bound protein at flow rates only slightly higher than average capillary flow rates, corroborated experimentally, suggesting that the probability of capture in a single pass at high flow rates is extremely low. Several other key parameters are investigated with the coupling between receptors and proteoglycans shown to have a critical impact on successful capture. The combined system offers opportunities to examine circulation capture in a straightforward quantitative manner that should prove advantageous for biological or drug delivery investigations.;For some complicated binding systems, where there are more growth factors or proteins with competing binding among them moving through hollow fibers of a bioreactor coupled with biochemical reactions on cell surfaces on the wall of fibers, a complex model is deduced from the basic model mentioned above. The fluid flow is also modeled by incompressible Navier-Stokes equations as mentioned in the basic model, the biochemical reactions in the fluid and on the cell surfaces are modeled by two distinctive sets of coupled nonlinear ordinary differential equations, and the mass transports of different growth factors or complexes are modeled separately by different sets of coupled nonlinear partial differential equations. To solve this computationally intensive system, parallel algorithms are devised, in which all the numerical computations are solved in parallel, including the discretization of mass transport equations and the linear system solver Stone's Implicit Procedure (SIP). A parallel SIP solver is designed, in which pipeline technique is used for LU factorization and an overlapped Jacobi iteration technique is chosen for forward and backward substitutions. For solving binding equations ODEs in the fluid and on cell surfaces, a parallel scheme combined with a sequential CVODE solver is used. The simulation results are obtained to demonstrate the computational efficiency of the algorithms and further experiments need to be conducted to verify the predictions.;KEYWORDS: Numerical simulation, laminar convection diffusion flow, mass transport, fibroblast growth factor and receptor binding, parallel computing.
机译:本论文证明了数值模拟在预测蛋白质在流动环境中的行为中的应用。;首次引入了一种新型的对流扩散反应计算模型来模拟成纤维细胞生长因子(FGF-2)与其受体(FGFR)结合。细胞表面,并在生物反应器中流过硫酸乙酰肝素蛋白聚糖(HSPG)的调控。该模型包括三个部分:(1)使用不可压缩的Navier-Stokes方程的介质流动; (2)使用对流扩散方程式计算FGF-2的质量传递; (3)利用化学动力学进行细胞表面结合。该模型由一组用于流动和质量传递的耦合非线性偏微分方程(PDE)和一组用于约束动力学的耦合非线性常微分方程(ODE)组成。为了处理脉动流,做了几个假设,包括忽略了入口效应,并获得了纤维内部轴向速度的近似解析解。为了解决与时间有关的传质PDE,使用了基于有限体积离散化的二阶隐式欧拉方法。结合动力学的ODE是刚性的,并由ODE求解器(CVODE)使用牛顿的向后微分公式求解。为了获得合理的细胞表面生化反应准确度,使用了均匀的网格。这个基本模型可用于模拟生物反应器中纤维壁细胞表面上的任何生长因子受体结合,只需替换结合动力学ODE即可。循环是天然和合成分子的重要递送方法,但微环境相互作用,由内皮细胞调节并且对分子命运至关重要,很难用传统方法来解释。使用上面提到的计算机模型和三维实验方法来分析和预测在流动条件下捕获的生长因子,该方法包括相关的循环特征,例如脉动血流,竞争性结合相互作用和有限的生物利用度。需要了解该过程的控制特征。实验模块由生物反应器组成,该反应器在流动状态下带有合成的衬有内皮的中空纤维。系统的物理设计已纳入模型参数中。 FGF-2用于实验和模拟。该计算模型基于单个空心纤维中的流动和反应,并根据纤维总数线性缩放以与实验结果进行比较。该模型预测并经实验证实,从系统中除去硫酸乙酰肝素(HS)将导致肝素结合蛋白(而不是不结合肝素的蛋白)的结合力急剧下降。该模型进一步预测,在流速仅略高于平均毛细血管流速的情况下,结合蛋白的显着损失,通过实验得到了证实,这表明在高流速下单次通过捕获的概率非常低。研究了其他几个关键参数,受体与蛋白聚糖之间的偶联对成功捕获具有关键影响。组合的系统提供了以直接的定量方式检查循环捕获的机会,这应该证明对生物学或药物递送研究是有利的。对于某些复杂的结合系统,其中有更多的生长因子或蛋白质,它们之间的竞争性结合通过中空纤维移动。如果将生物反应器与纤维壁细胞表面上的生化反应相结合,则可以从上述基本模型中推导出复杂模型。流体流动也通过基本模型中提到的不可压缩的Navier-Stokes方程进行建模,流体和细胞表面上的生化反应通过两组独特的耦合的非线性常微分方程进行建模,以及不同增长的质量输运通过耦合非线性偏微分方程的不同集合分别建模因子或复数。为了解决此计算密集型系统,设计了并行算法,其中并行求解所有数值计算,包括传质方程的离散化和线性系统求解器Stone的隐式过程(SIP)。设计了一个并行SIP求解器,其中使用流水线技术进行LU分解,并选择重叠的Jacobi迭代技术进行正向和反向替换。为了求解流体中和细胞表面上的约束方程ODE,使用了与顺序CVODE求解器组合的并行方案。获得的仿真结果证明了算法的计算效率,还需要进行进一步的实验以验证预测结果。关键词:数值模拟,层流对流扩散流,质量输运,成纤维细胞生长因子和受体结合,并行计算。

著录项

  • 作者

    Zhang, Changjiang.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Computer Science.;Biology Systematic.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号