首页> 外文学位 >DNA Separation in Nanoporous Microfluidic Devices.
【24h】

DNA Separation in Nanoporous Microfluidic Devices.

机译:纳米多孔微流体装置中的DNA分离。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates the size based separation of DNA molecules in nanoparticle arrays under asymmetric pulsed electrophoresis. Crystalline arrays of nanoparticles within microfluidic channels are fabricated using colloidal selfassembly, yielding structures with pore sizes ranging from a few nanometers to a few hundred nanometers. Angular separation of DNA molecules is achieved in these matrices using asymmetric pulsed field electrophoresis. The DNA migration mechanism in highly confined pores and the impact of pulse frequency and field magnitudes on DNA separation are studied. It is observed that in confinements smaller than the persistence length of DNA, the DNA molecule is fully stretched and can be treated as a persistent chain due to its bending elasticity. The frequency response of DNA separation is also investigated, showing four distinct regions in frequency response curve; a low frequency rise, a plateau, a subsequent decline, and a second plateau at higher frequencies. It is shown that this frequency response is governed by the relation between the pulse time, relaxation time, and the reorientation time of DNA. Real-time videos of single DNA migrating under high frequency pulsed electric field show the DNA no longer follows the ratchet mechanism seen at lower frequencies, but reptates along the average direction of the two electric fields. A freely-jointed-chain model of DNA is developed to calculate the frequency response of a chain under a pulsed external force. The model exhibits a similar variation of angular separation with frequency.;Finally, the role of order within a separation matrix on DNA separation efficiency is studied systematically. Colloidal arrays with two different sized nanoparticles mixed in various proportions are prepared, yielding structures with different degrees of disorder. Radial distribution functions and orientational order parameters are calculated to characterize the scale of disorder. The DNA separation resolution is quantified for each structure, showing a strong dependence on order within the structure. Ordered structures give better separation resolution than highly disordered structures. However, the variation of separation performance with order is not monotonic, showing a small, but statistically significant improvement in structures with short range order compared to those with long range order.
机译:本文研究了在不对称脉冲电泳条件下纳米粒子阵列中DNA分子的大小分离。微流体通道内的纳米颗粒的晶体阵列是使用胶体自组装制造的,产生的结构的孔径范围从几纳米到几百纳米。使用不对称脉冲场电泳在这些基质中实现DNA分子的角度分离。研究了在高度狭窄的孔中的DNA迁移机理以及脉冲频率和场强对DNA分离的影响。可以发现,在小于DNA持久长度的限制中,DNA分子被完全拉伸,并且由于其弯曲弹性而可以被视为持久链。还研究了DNA分离的频率响应,在频率响应曲线中显示了四个不同的区域。低频上升,平稳,随后的下降以及较高频率的第二平稳。结果表明,该频率响应受脉冲时间,弛豫时间和DNA重新定向时间之间的关系支配。在高频脉冲电场下迁移的单个DNA的实时视频显示,DNA在低频下不再遵循棘轮机制,而是沿两个电场的平均方向倾斜。建立了DNA的自由连接链模型,以计算在脉冲外力作用下链的频率响应。该模型表现出相似的角度分离随频率的变化。最后,系统地研究了分离矩阵中的顺序对DNA分离效率的作用。制备具有以不同比例混合的两种不同尺寸的纳米粒子的胶体阵列,产生具有不同程度的无序的结构。计算径向分布函数和取向顺序参数以表征疾病的规模。对每种结构的DNA分离分辨率进行了定量,显示了对结构内顺序的强烈依赖性。有序结构比高度无序的结构提供更好的分离分辨率。但是,分离性能随阶次的变化不是单调的,与具有长程阶次的结构相比,具有短程阶次的结构显示出较小但统计上显着的改进。

著录项

  • 作者

    Nazemifard, Neda.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 老年病学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号