首页> 外文学位 >Preconditioned iterative methods for linear systems, eigenvalue and singular value problems.
【24h】

Preconditioned iterative methods for linear systems, eigenvalue and singular value problems.

机译:线性系统,特征值和奇异值问题的预处理迭代方法。

获取原文
获取原文并翻译 | 示例

摘要

In the present dissertation we consider three crucial problems of numerical linear algebra: solution of a linear system, an eigenvalue, and a singular value problem. We focus on the solution methods which are iterative by their nature, matrix-free, preconditioned and require a fixed amount of computational work per iteration. In particular, this manuscript aims to contribute to the areas of research related to the convergence theory of the restarted Krylov subspace minimal residual methods, preconditioning for symmetric indefinite linear systems, approximation of interior eigenpairs of symmetric operators, and preconditioned singular value computations.;We first consider solving non-Hermitian linear systems with the restarted generalized minimal residual method (GMRES). We prove that the cycle-convergence of the method applied to a system of linear equations with a normal (preconditioned) coefficient matrix is sublinear. In the general case, however, it is shown that any admissible cycle-convergence behavior is possible for the restarted GMRES at a number of initial cycles, moreover the spectrum of the coefficient matrix alone does not determine this cycle-convergence.;Next we shift our attention to iterative methods for solving symmetric indefinite systems of linear equations with symmetric positive definite preconditioners. We describe a hierarchy of such methods, from a stationary iteration to the optimal Krylov subspace preconditioned minimal residual method, and suggest a preconditioning strategy based on an approximation of the inverse of the absolute value of the coefficient matrix (absolute value preconditioners). We present an example of a simple (geometric) multigrid absolute value preconditioner for the symmetric model problem of the discretized real Helmholtz (shifted Laplacian) equation in two spatial dimensions with a relatively low wavenumber.;We extend the ideas underlying the methods for solving symmetric indefinite linear systems to the problem of computing an interior eigenpair of a symmetric operator. We present a method that we call the Preconditioned Locally Minimal Residual method (PLMR), which represents a technique for finding an eigenpair corresponding to the smallest, in the absolute value, eigenvalue of a (generalized) symmetric matrix pencil. The method is based on the idea of the refined extraction procedure, performed in the preconditioner-based inner product over four-dimensional trial subspaces, and relies on the choice of the (symmetric positive definite) absolute value preconditioner.;Finally, we consider the problem of finding a singular triplet of a matrix. We suggest a preconditioned iterative method called PLMR-SVD for computing a singular triplet corresponding to the smallest singular value, and introduce preconditioning for the problem. At each iteration, the method extracts approximations for the right and left singular vectors from two separate four-dimensional trial subspaces by solving small quadratically constrained quadratic programs. We illustrate the performance of the method on the example of the model problem of finding the singular triplet corresponding to the smallest singular value of a gradient operator discretized over a two-dimensional domain. We construct a simple multigrid preconditioner for this problem.
机译:在本文中,我们考虑了数值线性代数的三个关键问题:线性系统的解,特征值和奇异值问题。我们专注于本质上是迭代的,无矩阵,经过预处理且每次迭代需要固定数量计算工作的求解方法。特别是,该手稿旨在为与重新启动的Krylov子空间最小残差方法的收敛理论,对称不定线性系统的预处理,对称算子的内部特征对的近似以及预处理奇异值计算有关的研究领域做出贡献。首先考虑使用重新启动的广义最小残差法(GMRES)求解非Hermitian线性系统。我们证明,应用于具有正态(预处理)系数矩阵的线性方程组的方法的循环收敛性是次线性的。然而,在一般情况下,表明在多个初始周期,重启的GMRES可能有任何允许的周期收敛行为,此外,系数矩阵的频谱本身并不能确定该周期收敛。我们关注用对称正定前置条件来求解线性方程组的对称不定系统的迭代方法。我们描述了这种方法的层次结构,从平稳迭代到最佳Krylov子空间预处理最小残差方法,并提出了一种基于系数矩阵的绝对值的倒数(绝对值预处理器)的近似值的预处理策略。我们提供了一个简单的(几何)多重网格绝对值预处理器示例,用于在波数相对较低的两个空间维度上离散化的实际Helmholtz(移位Laplacian)方程的对称模型问题;我们扩展了求解对称性方法基础的思想不定线性系统来解决对称算子的内部特征对问题。我们提出一种称为预条件局部最小残差法(PLMR)的方法,该方法代表一种用于找到与(广义)对称矩阵铅笔的绝对值最小特征值相对应的特征对的技术。该方法基于改进的提取过程的思想,在基于预条件子的内积上在四维试验子空间上执行,并且依赖于(对称正定)绝对值预条件子的选择。找到矩阵的奇异三元组的问题。我们建议一种称为PLMR-SVD的预处理迭代方法,用于计算与最小奇异值相对应的奇异三元组,并为此问题引入预处理。在每次迭代中,该方法通过求解小的二次约束二次程序,从两个单独的四维试验子空间中提取左右奇异矢量的近似值。我们以模型问题为例说明该方法的性能,该模型问题是找到与二维域上离散的梯度算子的最小奇异值相对应的奇异三元组。我们针对此问题构造了一个简单的多网格预处理器。

著录项

  • 作者

    Vecharynski, Eugene.;

  • 作者单位

    University of Colorado at Denver.;

  • 授予单位 University of Colorado at Denver.;
  • 学科 Applied Mathematics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 石油、天然气工业;
  • 关键词

  • 入库时间 2022-08-17 11:44:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号