首页> 外文学位 >Endure - engineering durable and efficient hierarchical wireless sensor networks.
【24h】

Endure - engineering durable and efficient hierarchical wireless sensor networks.

机译:持久性-设计耐用,高效的分层无线传感器网络。

获取原文
获取原文并翻译 | 示例

摘要

Battery powered wireless networks are becoming more and more ubiquitous in various forms such as Wireless Sensor Networks (WSN), wireless mesh networks, Wireless Body Area Networks (WBAN), and wireless distributed computing networks. With energy awareness and lifetime becoming critical design concerns in such networks, a significant amount of research has focused on energy-aware design of various network architectures and different layers of the network protocol stack. However, much less has been done in way of incorporating physical layer characteristics at the system deployment stage, applying location-aware and/or infrastructure-aware low power techniques, and analyzing the effects of these techniques on spatial energy balancing across the network (and therefore, the overall network lifetime and the corresponding quality of service).;In this work, physical layer characteristics, wireless channel access schemes, routing protocols, the overall network architecture, and relative node locations are examined and their impact on the network lifetime and the end-to-end delay are investigated. In addition, a number of techniques, which are integrated in a system called ENDURE, are introduced for cross layer design and optimization of a hierarchical wireless sensor network. The presented techniques, which focus on the physical, data link, and network layers, aim to increase the service lifetime of the network. They address both design time and run time decision making by using time varying queuing analysis and incorporating network dynamics. The effect of mobility of data collectors in a hierarchical wireless sensor network with mobile overlays is studied, and a corresponding multi-hop routing protocol is proposed. Given the real time changes in the network, the routing mechanism considers mobility and queuing delays in order to improve the network performance. In addition, a location-aware heterogeneous modulation scheme for a hierarchical wireless sensor networks is presented and its impact on the spatial distribution of energy dissipation, and hence, on the resulting network lifetime is studied. More precisely, the effects of heterogeneous modulation schemes on the time-slot arrangement and end-to-end delay (due to inherent trade-offs in power and bandwidth efficiencies) are analyzed. Finally, a new metric for quantifying the durability of a wireless network is introduced. This metric captures the remaining battery life profile of the network nodes at discrete time instances while accounting for the network functionality and specific design parameters and objectives.;Key contributions of this work may be summarized as follows: (1) Analysis of the effect of different parameters of a hierarchical architecture of a wireless network on the overall network lifetime and the associated performance of the system. (2) Development of energy and mobility-aware routing protocol (3) Development of the battery-aware cross-layer optimization techniques to maximize the life expectancy of a hierarchical network subject to an end-to-end delay constraint for data delivery. (These techniques include location-aware modulation and time slot arrangements.) (4) Analysis of the remaining battery life profile of the whole system and introduction of a novel durability metric to better capture the effective lifetime of a network. (5) Development of an event-based packet-level simulator. This simulator captures high level specification of the system along with physical properties of the wireless links for any hierarchical structure (i.e., flat and multi-tier networks comprised of a combination of mobile or fixed nodes in each level of the hierarchy).;The key intellectual merit of this research lies in addressing energy efficiency of monitoring sensor network as an intrinsic aspect of the distributed data collection tasks. This thesis includes energy-aware algorithms and techniques for wireless network design and deployment as the key enabler for cost-effective realization of many applications.
机译:电池供电的无线网络正以各种形式变得越来越普遍,例如无线传感器网络(WSN),无线网状网络,无线人体局域网(WBAN)和无线分布式计算网络。随着能源意识和寿命成为此类网络中的关键设计问题,大量研究集中在各种网络架构和网络协议栈的不同层的能源感知设计上。但是,在系统部署阶段合并物理层特征,应用位置感知和/或基础结构感知的低功耗技术以及分析这些技术对整个网络空间能量平衡的影响方面所做的工作很少因此,将检查总体网络生存期和相应的服务质量。);在这项工作中,将检查物理层特性,无线信道访问方案,路由协议,总体网络体系结构和相对节点位置,以及它们对网络生存期和性能的影响。研究了端到端延迟。另外,引入了许多技术,这些技术集成在称为ENDURE的系统中,用于跨层设计和分层无线传感器网络的优化。所提出的技术着重于物理,数据链路和网络层,旨在延长网络的使用寿命。它们通过使用时变排队分析并结合网络动力学来解决设计时间和运行时间决策问题。研究了具有移动覆盖的分层无线传感器网络中数据收集器移动性的影响,并提出了相应的多跳路由协议。给定网络中的实时变化,路由机制会考虑移动性和排队延迟,以提高网络性能。此外,提出了一种用于分层无线传感器网络的位置感知异构调制方案,并研究了其对能量耗散的空间分布的影响,并因此对由此产生的网络寿命进行了研究。更准确地说,分析了异构调制方案对时隙安排和端到端延迟(由于功率和带宽效率的固有折衷)的影响。最后,介绍了一种用于量化无线网络持久性的新指标。该指标捕获了离散时间实例中网络节点的剩余电池寿命配置文件,同时考虑了网络功能以及特定的设计参数和目标。这项工作的主要贡献可以归纳如下:(1)对不同影响的分析无线网络分层体系结构的参数对整个网络生存期和系统相关性能的影响。 (2)能源和移动感知路由协议的开发(3)电池感知跨层优化技术的开发,以使分层网络的预期寿命最大化,而该寿命受数据传输的端到端延迟约束。 (这些技术包括位置感知的调制和时隙安排。)(4)分析整个系统的剩余电池寿命,并引入新颖的耐用性度量标准,以更好地捕获网络的有效寿命。 (5)开发基于事件的数据包级模拟器。该模拟器捕获系统的高级规范以及用于任何层次结构(即,在层次结构的每个级别中由移动或固定节点的组合组成的平面和多层网络)的无线链路的物理属性。这项研究的智力价值在于解决将传感器网络的能源效率作为分布式数据收集任务的内在方面。本文包括用于无线网络设计和部署的能量感知算法和技术,作为实现许多应用程序经济高效的关键推动力。

著录项

  • 作者

    Soltan, Maryam.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号