首页> 外文学位 >Computer model of mechanisms underlying dynamic electrocardiographic T-wave changes.
【24h】

Computer model of mechanisms underlying dynamic electrocardiographic T-wave changes.

机译:动态心电图T波变化机制的计算机模型。

获取原文
获取原文并翻译 | 示例

摘要

Sudden death from arrhythmia is a major cause of mortality in the United States. Unfortunately, no current diagnostic test can accurately predict risk for sudden arrhythmic death. Because ventricular arrhythmias often result from abnormalities of repolarization, assessment of myocardial repolarization using the electrocardiogram (ECG) can aid in prediction of arrhythmia risk. Non-linear, rate-dependent changes in myocardial repolarization can promote the development of arrhythmia, but few studies examine how these dynamic changes in repolarization affect the ECG. This dissertation describes the use of a computer model to investigate the effect of dynamic changes in myocardial repolarization on the ECG T wave.;To simulate action potential conduction from the endocardium to the epicardium of the free wall of the canine left ventricle, 1-dimensional multicellular computer fiber models were created. Each fiber model was composed of endocardial, midmyocardial, and epicardial cells. For each cell type, existing mathematical models were modified to approximate experimental data for four types of dynamic repolarization behavior: (1) dynamic restitution, the response to steady-state pacing; (2) S1-S2 restitution, the response to a premature or postmature stimulus; (3) short-term memory (STM), the response to an abrupt change in pacing rate; and (4) repolarization alternans, beat-to-beat alternation in cellular repolarization time. Repolarization times were obtained from endocardial, midmyocardial, and epicardial regions in the fiber model and compared to parameters measured from a computed transmural ECG.;Spatial differences in repolarization created two voltage gradients that influenced the ECG: an endocardial-midmyocardial (endo-mid) gradient and a midmyocardial-epicardial (mid-epi) gradient. Epicardial dynamic restitution changes altered the mid-epi gradient, influencing the rising phase of the ECG T wave, and endocardial dynamic restitution changes altered the endo-mid gradient, influencing the falling phase of the T wave. Changes in epicardial or endocardial repolarization due to S1-S2 restitution or STM caused transient changes in the rising or falling phase of the T wave, respectively.;During repolarization alternans, an alternating, asymmetric distribution of extracellular potential around the fiber influenced the measurement of T-wave alternans (TWA) in the ECG. Presence of a resistive barrier in the fiber model altered the magnitude of repolarization alternans as well as the TWA amplitude in the ECG with effects dependent on barrier location. The resistive barrier also modified the relationship between cellular repolarization alternans magnitude and TWA amplitude.;The results presented in this dissertation explain basic mechanisms by which dynamic changes in myocardial repolarization affect the ECG T wave. These mechanisms form the foundation for the development of techniques to identify arrhythmogenic, dynamic changes in the myocardium using the ECG. Future studies in higher-dimensional, more complex models will build upon these results by considering the influence of additional voltage gradients, more realistic tissue geometries, and heterogeneities in the volume conductor.
机译:心律失常导致的猝死是美国死亡的主要原因。不幸的是,当前的诊断测试无法准确预测突然心律失常死亡的风险。由于室性心律失常通常由复极化异常引起,因此使用心电图(ECG)评估心肌复极化可有助于预测心律不齐的风险。心肌复极的非线性,速率依赖性变化可以促进心律失常的发展,但是很少有研究检查复极中的这些动态变化如何影响心电图。本文描述了使用计算机模型研究心肌复极动态变化对ECG T波的影响。;模拟从左心室自由壁心内膜到心外膜的动作电位传导,一维创建了多细胞计算机纤维模型。每种纤维模型均由心内膜,心肌中层和心外膜细胞组成。对于每种细胞类型,对现有的数学模型进行了修改,以近似得出四种动态复极化行为的实验数据:(1)动态复归,对稳态起搏的反应; (2)S1-S2恢复原状,对过早或过早刺激的反应; (3)短期记忆(STM),对起搏速度突然变化的反应; (4)复极化交替,细胞复极化时间的逐次交替。从纤维模型的心内膜,心肌中膜和心外膜区域获得复极化时间,并将其与通过计算的透壁心电图测量的参数进行比较;复极化的空间差异产生了两个影响ECG的电压梯度:心内膜-心肌(内膜-中膜)梯度和心肌中膜心外膜(mid-epi)梯度。心外膜动态恢复改变改变了上中斜率,影响了心电图T波的上升阶段,心内膜动态恢复改变改变了内中梯度,影响了T波的下降阶段。由于S1-S2复原或STM引起的心外膜或心内膜复极变化分别导致T波上升或下降阶段的瞬时变化。 ECG中的T波交替蛋白(TWA)。光纤模型中电阻性屏障的存在改变了重新极化交替的幅度以及ECG中的TWA振幅,其影响取决于屏障位置。电阻性屏障还改变了细胞复极化交替幅度与TWA振幅之间的关系。本论文的结果解释了心肌复极化动态变化影响ECG T波的基本机制。这些机制构成了开发使用ECG识别心律失常,动态变化的技术的基础。通过考虑其他电压梯度,更实际的组织几何形状和体积导体中的异质性的影响,将在这些结果的基础上对更高维度,更复杂的模型进行进一步的研究。

著录项

  • 作者

    Doshi, Ashish Nikhil.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号