首页> 外文学位 >Effect of Pressure and Temperature on the Hydrodynamics of a Polyethylene Fluidized Bed.
【24h】

Effect of Pressure and Temperature on the Hydrodynamics of a Polyethylene Fluidized Bed.

机译:压力和温度对聚乙烯流化床流体力学的影响。

获取原文
获取原文并翻译 | 示例

摘要

Gas-Solid fluidized beds are among the most important reactor systems in the chemical industry both because of excellent mixing ability and high heat and mass transfer rates, in situations of relatively low pressure drops. The presence of bubbles in the reactor produces a vigorous mixing, that enhances the gas-particle contact, improving the heat and mass transfer rates. Transport mechanisms in a gas-solid fluidized bed are dominated by bubble behavior. The purpose of this study was to experimentally investigate the effect of high pressures and temperatures on fluidization. Experiments were carried out in a bubbling bed over the range of operating pressures of about 100-2760 kPag and in two different temperatures, 50°C and 80°C. The bed material selected was Polyethylene, and it was fluidized by Nitrogen in an aluminum column (30 cm in diameter and 280 cm in height). Non-intrusive techniques such as pressure fluctuation were used to analyze the results. Superficial gas velocity up to 6 Umf was used in order to avoid significant entrainment problems. Operating temperature was selected less than 85°C to prevent agglomeration.;Detailed statistical methods such as Standard Deviations, Time Series, Periodograms and Power Spectral Density Functions (PSD) were applied to analyze the pressure fluctuations. The results confirm Multiple Bubble Regime in different pressures and temperatures for this system, meaning that bubbles are from different sizes and velocities. Moreover, minimum fluidization velocity (U mf) decreases with both increasing pressure and temperature for Polyethylene particles under experimental conditions. At constant P and T, bubble sizes increase with bed height and excess gas velocities due to coalescence and more gas flowing upward the system. Bubble diameters decrease with increasing pressure because of more breakage and splitting and less coalescence and gas flow. At the same operating conditions, bubble sizes increase with temperature due to viscous forces and more coalescence.
机译:气固流化床是化学工业中最重要的反应器系统之一,因为它们具有出色的混合能力以及在相对较低的压降情况下具有较高的传热和传质速率。反应器中气泡的存在产生了剧烈的混合,这增强了气体-颗粒的接触,提高了传热和传质速率。气固流化床中的输送机制主要由气泡行为决定。这项研究的目的是通过实验研究高压和高温对流化的影响。在鼓泡床中在约100-2760 kPag的工作压力范围内以及两个不同的温度50°C和80°C下进行实验。选择的床材料为聚乙烯,并通过氮气在铝柱(直径30厘米,高280厘米)中流化。使用非侵入性技术(例如压力波动)来分析结果。为了避免明显的夹带问题,使用了高达6 Umf的表观气体速度。选择工作温度低于85°C以防止结块。;采用详细的统计方法,例如标准偏差,时间序列,周期图和功率谱密度函数(PSD),分析压力波动。结果证实了该系统在不同压力和温度下的多重气泡状态,这意味着气泡来自不同的大小和速度。此外,在实验条件下,聚乙烯颗粒的最小流化速度(U mf)随压力和温度的升高而降低。在恒定的P和T下,由于聚结和更多的气体向上流向系统,气泡尺寸会随着床高和过量气体速度而增加。气泡直径随着压力的增加而减小,这是因为更多的破裂和分裂以及更少的聚结和气流。在相同的工作条件下,由于粘性力和更多的聚结,气泡尺寸会随温度而增加。

著录项

  • 作者

    Ghods, Mahfam.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Engineering Chemical.
  • 学位 M.Sc.
  • 年度 2011
  • 页码 313 p.
  • 总页数 313
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号