首页> 外文学位 >Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe.
【24h】

Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe.

机译:子组方法在多组蒙特卡洛计算中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications.;The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations.;Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic effects of the scattering reaction consistent with the subgroup method. In this study, we generalize the Discrete Angle Technique, already proposed for homogeneous, multigroup cross sections, to isotopic cross sections on the form of probability tables. In this technique, the angular density is discretized into probability tables. Similarly to the cross-section case, a moment approach is used to compute the probability tables for the scattering cosine. (4) The introduction of a leakage model based on the B1 fundamental mode approximation. Unlike deterministic lattice packages, most Monte Carlo-based lattice physics codes do not include leakage models. However the generation of homogenized and condensed group constants (cross sections, diffusion coefficients) require the critical flux.;This project has involved the development of a program into the DRAGON framework, written in Fortran 2003 and wrapped with a driver in C, the GANLIB 5. Choosing Fortran 2003 has permitted the use of some modern features, such as the definition of objects and methods, data encapsulation and polymorphism.;The validation of the proposed code has been performed by comparison with other numerical methods: (1) The continuous-energy Monte Carlo method of the SERPENT code. (2) The Collision Probability (CP) method and the discrete ordinates (SN) method of the DRAGON lattice code. (3) The multigroup Monte Carlo code MORET, coupled with the DRAGON code.;Benchmarks used in this work are representative of some industrial configurations encountered in reactor and criticality-safety calculations: (1)Pressurized Water Reactors (PWR) cells and assemblies. (2) Canada-Deuterium Uranium Reactors (CANDU-6) clusters. (3) Critical experiments from the ICSBEP handbook (International Criticality Safety Benchmark Evaluation Program).
机译:本文致力于基于子群(或多频带)方法的蒙特卡洛中子输运求解器的开发。在这种形式主义中,共振同位素的横截面以在整个能谱上的概率表的形式表示。这项研究旨在在晶格物理学和临界安全性应用中测试和验证此方法。概率表方法似乎很有希望,因为它在传统连续能量表示法和多组方法之间引入了另一种计算方法。在第一种情况下,在连续能量蒙特卡洛计算中调用的数据量可能非常重要,并且会减慢总体计算时间。另外,此模型保留了ENDF格式中存在的物理定律的质量。由于其廉价的计算成本,多组蒙特卡洛方法通常在关键安全性研究中以生产代码为基础。但是,使用横截面的多组表示意味着要进行初步计算,以考虑到共振同位素的自屏蔽效应。这通常通过依赖于碰撞概率方法的确定性格码来执行。在整个能量范围内使用横截面概率表可以直接考虑自屏蔽效应,并且可以用于晶格物理学和临界安全性计算中;;已经全面研究了以下几个方面:(1)一致计算具有仅包含295或361组的能量网格的概率表。 CALENDF矩方法适用于适用于蒙特卡洛代码的概率表。 (2)将能量变量的概率表采样与空间变量的增量跟踪拒绝技术相结合,并对其提出的蒙特卡洛算法的整体效率产生影响。 (3)推导了考虑与亚组方法一致的散射反应的各向异性效应的模型。在这项研究中,我们将已经建议用于均质多组截面的离散角技术推广到概率表形式的同位素截面。在这种技术中,角密度被离散到概率表中。与横截面情况类似,矩量法用于计算散射余弦的概率表。 (4)引入基于B1基本模式近似的泄漏模型。与确定性晶格封装不同,大多数基于蒙特卡洛的晶格物理代码不包括泄漏模型。但是,生成均质和凝聚基团常数(横截面,扩散系数)需要临界通量。该项目涉及将程序开发到DRAGON框架中,该框架由Fortran 2003编写,并用C语言的驱动程序GANLIB包装5.选择Fortran 2003允许使用某些现代功能,例如对象和方法的定义,数据封装和多态性。;通过与其他数值方法进行比较,对所提议的代码进行了验证:(1)连续能量的SERPENT代码的蒙特卡洛方法。 (2)DRAGON格码的碰撞概率(CP)方法和离散纵坐标(SN)方法。 (3)多组蒙特卡罗代码MORET,再加上DRAGON代码。本工作中使用的基准代表了反应堆和临界安全计算中遇到的一些工业配置:(1)压水堆(PWR)电池和组件。 (2)加拿大-氘铀反应堆(CANDU-6)集群。 (3)来自ICSBEP手册(国际关键安全基准评估计划)的关键实验。

著录项

  • 作者

    Martin, Nicolas.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号