首页> 外文学位 >III-V semiconductors on silicon-germanium substrates for multi-junction photovoltaics.
【24h】

III-V semiconductors on silicon-germanium substrates for multi-junction photovoltaics.

机译:用于多结光伏电池的硅锗衬底上的III-V半导体。

获取原文
获取原文并翻译 | 示例

摘要

The epitaxial integration of high quality III-V semiconductors with Si is of fundamental interest for photovoltaic devices since Si substrates offer a lighter, stronger, and cost effective platform for device production. However, the lattice-mismatch between conventional III-V photovoltaic materials and Si generates threading dislocations in the epitaxial device layers, which can limit solar cell performance, depending of the density of such defects, the particular III-V material, and the device design. By using compositionally step-graded SiGe interlayers up to 100% Ge, which is lattice-matched to GaAs, the ∼4% lattice-mismatch between Si and GaAs and In0.49 Ga0.51P is accommodated in the Group IV alloy system; this has produced defect densities less than 1 x 106 cm -2 in fully relaxed the Ge/SiGe/Si (SiGe) virtual substrates. This unique approach to III-V/Si integration is employed in this dissertation for the development of GaAs and In0.49Ga0.51P single junction (SJ) solar cells and ultimately In0.49Ga0.51P/GaAs dual junction (DJ) solar cells, integrated on a Si platform.; The residual threading dislocation density (TDD) present in the SiGe substrates transfers to the epitaxially grown III-V layers and thus can influence III-V solar cell performance. In this dissertation we report, for the first time, on the impact of TDD on the minority carrier electron lifetime in GaAs grown on SiGe. The electron lifetime in metamorphic p-type GaAs was found to be lower than that of holes in n-type GaAs at a given TDD. This resulted from the higher mobility of electrons compared to holes and thus enhanced interactions with the TD array. Incorporating a TDD dependent lifetime into metamorphic GaAs solar cell device models, higher reverse saturation current densities and lower open-circuit voltages for n+/p compared to p+/n were predicted. This result was experimentally confirmed in this dissertation by diode and solar cell device measurements of both n +/p and p+/n GaAs cells grown on GaAs and SiGe substrates. The higher performance of the p+/n GaAs-on-SiGe solar cell, by virtue of its higher opencircuit voltage, offers great potential for both space and terrestrial photovoltaic applications. The extension of this technology to space applications has lead to the development of large area GaAs-on-SiGe solar cells (up to 4 cm2) with no degradation in cell performance. These large area cells will be flown on the International Space Station to test their actual space performance, which indicates their technological importance. Meanwhile, record terrestrial performance was measured and suggests efficiencies higher than 20% are realizable with current SiGe substrate technologies. (Abstract shortened by UMI.)
机译:高质量的III-V半导体与Si的外延集成对于光伏器件至关重要,因为Si衬底为器件生产提供了更轻,更坚固且具有成本效益的平台。但是,常规III-V光伏材料与Si之间的晶格失配会在外延器件层中产生螺纹位错,这会限制太阳能电池的性能,具体取决于此类缺陷的密度,特定的III-V材料和器件设计。 。通过使用高达100%Ge且与GaAs晶格匹配的成分逐步渐变的SiGe中间层,Si和GaAs与In0.49 Ga0.51P之间〜4%的晶格失配被容纳在IV型合金体系中。在完全松弛的Ge / SiGe / Si(SiGe)虚拟衬底中,这产生了小于1 x 106 cm -2的缺陷密度。本文采用这种独特的III-V / Si集成方法来开发GaAs和In0.49Ga0.51P单结(SJ)太阳能电池,最终开发In0.49Ga0.51P / GaAs双结(DJ)太阳能电池,集成在Si平台上。 SiGe基板中存在的残留螺纹位错密度(TDD)会转移到外延生长的III-V层,因此会影响III-V太阳能电池的性能。在本文中,我们首次报道了TDD对SiGe上生长的GaAs中少数载流子电子寿命的影响。发现在给定的TDD下,变质p型GaAs的电子寿命低于n型GaAs中的空穴。这是由于电子比空穴具有更高的迁移率,因此与TD阵列的相互作用增强。将与TDD相关的寿命纳入变质GaAs太阳能电池器件模型,可以预测与p + / n相比,n + / p的反向饱和电流密度更高,开路电压更低。通过二极管和太阳能电池器件测量在GaAs和SiGe衬底上生长的n + / p和p + / n GaAs电池,实验上证实了这一结果。由于p + / nGaAs-on-SiGe太阳能电池具有更高的开路电压,其更高的性能为空间和地面光伏应用提供了巨大的潜力。这项技术在空间应用中的扩展导致了大面积SiAs砷化镓砷化镓太阳能电池(最大4 cm2)的开发,而电池性能却没有下降。这些大面积的单元将在国际空间站上飞行以测试其实际空间性能,这表明了它们的技术重要性。同时,测量了创纪录的地面性能,并暗示使用当前的SiGe基板技术可实现高于20%的效率。 (摘要由UMI缩短。)

著录项

  • 作者

    Andre, Carrie L.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 349 p.
  • 总页数 349
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号